--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.6381977967570244 - name: Recall type: recall value: 0.621055167429535 - name: F1 type: f1 value: 0.6295097979366338 - name: Accuracy type: accuracy value: 0.9309591653454259 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2431 - Precision: 0.6382 - Recall: 0.6211 - F1: 0.6295 - Accuracy: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3539 | 1.0 | 521 | 0.2735 | 0.5837 | 0.5829 | 0.5833 | 0.9218 | | 0.207 | 2.0 | 1042 | 0.2431 | 0.6382 | 0.6211 | 0.6295 | 0.9310 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cpu - Datasets 3.0.1 - Tokenizers 0.20.0