End of training
Browse files
README.md
CHANGED
@@ -23,11 +23,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
-
- Loss: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
-
- F1: 0.
|
30 |
-
- Accuracy: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -52,109 +52,83 @@ The following hyperparameters were used during training:
|
|
52 |
- seed: 42
|
53 |
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
55 |
-
- training_steps:
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
-
| 2.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.0574 | 2.3529 | 720 | 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.0423 | 4.3137 | 1320 | 0.0712 | 0.9435 | 0.9513 | 0.9474 | 0.9814 |
|
128 |
-
| 0.05 | 4.3791 | 1340 | 0.0700 | 0.9395 | 0.9579 | 0.9486 | 0.9815 |
|
129 |
-
| 0.0404 | 4.4444 | 1360 | 0.0748 | 0.9255 | 0.9558 | 0.9404 | 0.9789 |
|
130 |
-
| 0.0341 | 4.5098 | 1380 | 0.0783 | 0.9253 | 0.9572 | 0.9409 | 0.9789 |
|
131 |
-
| 0.0477 | 4.5752 | 1400 | 0.0754 | 0.9319 | 0.9514 | 0.9415 | 0.9798 |
|
132 |
-
| 0.0479 | 4.6405 | 1420 | 0.0785 | 0.9242 | 0.9593 | 0.9414 | 0.9789 |
|
133 |
-
| 0.0404 | 4.7059 | 1440 | 0.0764 | 0.9313 | 0.9515 | 0.9413 | 0.9788 |
|
134 |
-
| 0.0477 | 4.7712 | 1460 | 0.0755 | 0.9320 | 0.9577 | 0.9447 | 0.9797 |
|
135 |
-
| 0.0446 | 4.8366 | 1480 | 0.0734 | 0.9353 | 0.9567 | 0.9459 | 0.9801 |
|
136 |
-
| 0.0412 | 4.9020 | 1500 | 0.0751 | 0.9303 | 0.9557 | 0.9429 | 0.9794 |
|
137 |
-
| 0.048 | 4.9673 | 1520 | 0.0736 | 0.9326 | 0.9561 | 0.9442 | 0.9802 |
|
138 |
-
| 0.0409 | 5.0327 | 1540 | 0.0774 | 0.9292 | 0.9552 | 0.9420 | 0.9792 |
|
139 |
-
| 0.0339 | 5.0980 | 1560 | 0.0757 | 0.9336 | 0.9544 | 0.9439 | 0.9802 |
|
140 |
-
| 0.0465 | 5.1634 | 1580 | 0.0755 | 0.9317 | 0.9575 | 0.9445 | 0.9798 |
|
141 |
-
| 0.037 | 5.2288 | 1600 | 0.0766 | 0.9277 | 0.9562 | 0.9417 | 0.9788 |
|
142 |
-
| 0.0342 | 5.2941 | 1620 | 0.0775 | 0.9284 | 0.9540 | 0.9410 | 0.9788 |
|
143 |
-
| 0.0317 | 5.3595 | 1640 | 0.0766 | 0.9340 | 0.9554 | 0.9446 | 0.9800 |
|
144 |
-
| 0.0366 | 5.4248 | 1660 | 0.0744 | 0.9343 | 0.9545 | 0.9443 | 0.9801 |
|
145 |
-
| 0.0412 | 5.4902 | 1680 | 0.0747 | 0.9331 | 0.9563 | 0.9446 | 0.9801 |
|
146 |
-
| 0.0352 | 5.5556 | 1700 | 0.0723 | 0.9378 | 0.9549 | 0.9463 | 0.9809 |
|
147 |
-
| 0.0368 | 5.6209 | 1720 | 0.0736 | 0.9319 | 0.9542 | 0.9429 | 0.9798 |
|
148 |
-
| 0.0344 | 5.6863 | 1740 | 0.0739 | 0.9328 | 0.9540 | 0.9433 | 0.9798 |
|
149 |
-
| 0.0334 | 5.7516 | 1760 | 0.0735 | 0.9324 | 0.9537 | 0.9429 | 0.9799 |
|
150 |
-
| 0.0329 | 5.8170 | 1780 | 0.0743 | 0.9321 | 0.9562 | 0.9440 | 0.9800 |
|
151 |
-
| 0.0354 | 5.8824 | 1800 | 0.0741 | 0.9329 | 0.9556 | 0.9441 | 0.9799 |
|
152 |
-
| 0.0292 | 5.9477 | 1820 | 0.0738 | 0.9331 | 0.9552 | 0.9441 | 0.9799 |
|
153 |
|
154 |
|
155 |
### Framework versions
|
156 |
|
157 |
-
- PEFT 0.
|
158 |
- Transformers 4.47.1
|
159 |
- Pytorch 2.5.1+cu121
|
160 |
- Datasets 3.2.0
|
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0688
|
27 |
+
- Precision: 0.9390
|
28 |
+
- Recall: 0.9598
|
29 |
+
- F1: 0.9493
|
30 |
+
- Accuracy: 0.9821
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
52 |
- seed: 42
|
53 |
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
55 |
+
- training_steps: 1300
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| 2.4626 | 0.0654 | 20 | 0.9421 | 0.4829 | 0.1165 | 0.1877 | 0.7544 |
|
63 |
+
| 0.7547 | 0.1307 | 40 | 0.3993 | 0.7557 | 0.6814 | 0.7166 | 0.8940 |
|
64 |
+
| 0.4022 | 0.1961 | 60 | 0.2119 | 0.8276 | 0.8158 | 0.8217 | 0.9396 |
|
65 |
+
| 0.2732 | 0.2614 | 80 | 0.1631 | 0.8250 | 0.8746 | 0.8491 | 0.9512 |
|
66 |
+
| 0.2083 | 0.3268 | 100 | 0.1423 | 0.8591 | 0.9037 | 0.8808 | 0.9576 |
|
67 |
+
| 0.2216 | 0.3922 | 120 | 0.1392 | 0.8562 | 0.9147 | 0.8845 | 0.9572 |
|
68 |
+
| 0.1787 | 0.4575 | 140 | 0.1114 | 0.8940 | 0.9173 | 0.9055 | 0.9664 |
|
69 |
+
| 0.1642 | 0.5229 | 160 | 0.1191 | 0.8840 | 0.9270 | 0.9050 | 0.9657 |
|
70 |
+
| 0.1557 | 0.5882 | 180 | 0.1089 | 0.8825 | 0.9284 | 0.9049 | 0.9665 |
|
71 |
+
| 0.1406 | 0.6536 | 200 | 0.0982 | 0.8967 | 0.9279 | 0.9121 | 0.9700 |
|
72 |
+
| 0.1359 | 0.7190 | 220 | 0.0879 | 0.9182 | 0.9269 | 0.9225 | 0.9733 |
|
73 |
+
| 0.1272 | 0.7843 | 240 | 0.1047 | 0.8940 | 0.9506 | 0.9214 | 0.9697 |
|
74 |
+
| 0.1157 | 0.8497 | 260 | 0.0985 | 0.9198 | 0.9266 | 0.9232 | 0.9719 |
|
75 |
+
| 0.1191 | 0.9150 | 280 | 0.1166 | 0.8827 | 0.9427 | 0.9117 | 0.9656 |
|
76 |
+
| 0.1298 | 0.9804 | 300 | 0.0878 | 0.9211 | 0.9315 | 0.9263 | 0.9736 |
|
77 |
+
| 0.1107 | 1.0458 | 320 | 0.0834 | 0.9205 | 0.9512 | 0.9356 | 0.9762 |
|
78 |
+
| 0.0942 | 1.1111 | 340 | 0.0874 | 0.9097 | 0.9574 | 0.9329 | 0.9745 |
|
79 |
+
| 0.0979 | 1.1765 | 360 | 0.0771 | 0.9259 | 0.9518 | 0.9387 | 0.9779 |
|
80 |
+
| 0.0971 | 1.2418 | 380 | 0.0814 | 0.9280 | 0.9478 | 0.9378 | 0.9781 |
|
81 |
+
| 0.1053 | 1.3072 | 400 | 0.0804 | 0.9214 | 0.9399 | 0.9306 | 0.9761 |
|
82 |
+
| 0.1075 | 1.3725 | 420 | 0.0835 | 0.9083 | 0.9369 | 0.9224 | 0.9738 |
|
83 |
+
| 0.0893 | 1.4379 | 440 | 0.0773 | 0.9329 | 0.9469 | 0.9398 | 0.9784 |
|
84 |
+
| 0.09 | 1.5033 | 460 | 0.0737 | 0.9316 | 0.9522 | 0.9418 | 0.9787 |
|
85 |
+
| 0.0947 | 1.5686 | 480 | 0.0787 | 0.9141 | 0.9549 | 0.9340 | 0.9763 |
|
86 |
+
| 0.0907 | 1.6340 | 500 | 0.0813 | 0.9179 | 0.9522 | 0.9347 | 0.9770 |
|
87 |
+
| 0.0752 | 1.6993 | 520 | 0.0802 | 0.9130 | 0.9575 | 0.9347 | 0.9772 |
|
88 |
+
| 0.0801 | 1.7647 | 540 | 0.0703 | 0.9302 | 0.9530 | 0.9415 | 0.9797 |
|
89 |
+
| 0.092 | 1.8301 | 560 | 0.0739 | 0.9301 | 0.9513 | 0.9406 | 0.9785 |
|
90 |
+
| 0.0862 | 1.8954 | 580 | 0.0899 | 0.9034 | 0.9526 | 0.9274 | 0.9735 |
|
91 |
+
| 0.0869 | 1.9608 | 600 | 0.0782 | 0.9164 | 0.9510 | 0.9334 | 0.9765 |
|
92 |
+
| 0.0713 | 2.0261 | 620 | 0.0771 | 0.9225 | 0.9579 | 0.9399 | 0.9785 |
|
93 |
+
| 0.0635 | 2.0915 | 640 | 0.0729 | 0.9356 | 0.9524 | 0.9439 | 0.9797 |
|
94 |
+
| 0.0527 | 2.1569 | 660 | 0.0764 | 0.9088 | 0.9475 | 0.9277 | 0.9765 |
|
95 |
+
| 0.0738 | 2.2222 | 680 | 0.0747 | 0.9233 | 0.9576 | 0.9401 | 0.9783 |
|
96 |
+
| 0.0628 | 2.2876 | 700 | 0.0751 | 0.9334 | 0.9589 | 0.9460 | 0.9801 |
|
97 |
+
| 0.0574 | 2.3529 | 720 | 0.0713 | 0.9354 | 0.9580 | 0.9465 | 0.9807 |
|
98 |
+
| 0.0628 | 2.4183 | 740 | 0.0700 | 0.9347 | 0.9540 | 0.9443 | 0.9809 |
|
99 |
+
| 0.0771 | 2.4837 | 760 | 0.0707 | 0.9326 | 0.9607 | 0.9465 | 0.9811 |
|
100 |
+
| 0.068 | 2.5490 | 780 | 0.0753 | 0.9318 | 0.9648 | 0.9480 | 0.9807 |
|
101 |
+
| 0.0653 | 2.6144 | 800 | 0.0680 | 0.9400 | 0.9583 | 0.9491 | 0.9820 |
|
102 |
+
| 0.0567 | 2.6797 | 820 | 0.0762 | 0.9327 | 0.9540 | 0.9433 | 0.9791 |
|
103 |
+
| 0.066 | 2.7451 | 840 | 0.0719 | 0.9297 | 0.9570 | 0.9431 | 0.9805 |
|
104 |
+
| 0.0576 | 2.8105 | 860 | 0.0723 | 0.9360 | 0.9597 | 0.9477 | 0.9808 |
|
105 |
+
| 0.0608 | 2.8758 | 880 | 0.0744 | 0.9309 | 0.9566 | 0.9436 | 0.9791 |
|
106 |
+
| 0.0521 | 2.9412 | 900 | 0.0679 | 0.9355 | 0.9599 | 0.9475 | 0.9814 |
|
107 |
+
| 0.051 | 3.0065 | 920 | 0.0688 | 0.9373 | 0.9594 | 0.9482 | 0.9818 |
|
108 |
+
| 0.0444 | 3.0719 | 940 | 0.0723 | 0.9335 | 0.9607 | 0.9469 | 0.9814 |
|
109 |
+
| 0.0468 | 3.1373 | 960 | 0.0767 | 0.9246 | 0.9554 | 0.9397 | 0.9787 |
|
110 |
+
| 0.0433 | 3.2026 | 980 | 0.0681 | 0.9376 | 0.9591 | 0.9482 | 0.9819 |
|
111 |
+
| 0.0468 | 3.2680 | 1000 | 0.0722 | 0.9318 | 0.9589 | 0.9452 | 0.9808 |
|
112 |
+
| 0.0496 | 3.3333 | 1020 | 0.0708 | 0.9341 | 0.9496 | 0.9418 | 0.9803 |
|
113 |
+
| 0.0473 | 3.3987 | 1040 | 0.0699 | 0.9315 | 0.9666 | 0.9487 | 0.9819 |
|
114 |
+
| 0.0534 | 3.4641 | 1060 | 0.0675 | 0.9368 | 0.9569 | 0.9468 | 0.9819 |
|
115 |
+
| 0.0421 | 3.5294 | 1080 | 0.0698 | 0.9322 | 0.9564 | 0.9442 | 0.9809 |
|
116 |
+
| 0.0444 | 3.5948 | 1100 | 0.0715 | 0.9303 | 0.9539 | 0.9420 | 0.9799 |
|
117 |
+
| 0.0366 | 3.6601 | 1120 | 0.0671 | 0.9382 | 0.9615 | 0.9497 | 0.9823 |
|
118 |
+
| 0.0505 | 3.7255 | 1140 | 0.0687 | 0.9376 | 0.9554 | 0.9464 | 0.9814 |
|
119 |
+
| 0.0431 | 3.7908 | 1160 | 0.0698 | 0.9338 | 0.9594 | 0.9465 | 0.9813 |
|
120 |
+
| 0.0519 | 3.8562 | 1180 | 0.0696 | 0.9378 | 0.9604 | 0.9490 | 0.9820 |
|
121 |
+
| 0.0471 | 3.9216 | 1200 | 0.0712 | 0.9380 | 0.9599 | 0.9488 | 0.9817 |
|
122 |
+
| 0.0544 | 3.9869 | 1220 | 0.0688 | 0.9407 | 0.9588 | 0.9497 | 0.9819 |
|
123 |
+
| 0.0392 | 4.0523 | 1240 | 0.0688 | 0.9389 | 0.9599 | 0.9493 | 0.9822 |
|
124 |
+
| 0.0303 | 4.1176 | 1260 | 0.0698 | 0.9376 | 0.9601 | 0.9487 | 0.9817 |
|
125 |
+
| 0.0383 | 4.1830 | 1280 | 0.0689 | 0.9393 | 0.9605 | 0.9498 | 0.9821 |
|
126 |
+
| 0.0389 | 4.2484 | 1300 | 0.0688 | 0.9390 | 0.9598 | 0.9493 | 0.9821 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
|
129 |
### Framework versions
|
130 |
|
131 |
+
- PEFT 0.14.0
|
132 |
- Transformers 4.47.1
|
133 |
- Pytorch 2.5.1+cu121
|
134 |
- Datasets 3.2.0
|