raulgdp commited on
Commit
5fba758
·
verified ·
1 Parent(s): 52d8d51

End of training

Browse files
Files changed (1) hide show
  1. README.md +72 -98
README.md CHANGED
@@ -23,11 +23,11 @@ should probably proofread and complete it, then remove this comment. -->
23
 
24
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
25
  It achieves the following results on the evaluation set:
26
- - Loss: 0.0738
27
- - Precision: 0.9331
28
- - Recall: 0.9552
29
- - F1: 0.9441
30
- - Accuracy: 0.9799
31
 
32
  ## Model description
33
 
@@ -52,109 +52,83 @@ The following hyperparameters were used during training:
52
  - seed: 42
53
  - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
  - lr_scheduler_type: linear
55
- - training_steps: 1820
56
  - mixed_precision_training: Native AMP
57
 
58
  ### Training results
59
 
60
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
- | 2.6032 | 0.0654 | 20 | 1.0917 | 0.5114 | 0.0967 | 0.1627 | 0.7363 |
63
- | 0.9298 | 0.1307 | 40 | 0.5124 | 0.6593 | 0.6002 | 0.6284 | 0.8730 |
64
- | 0.5028 | 0.1961 | 60 | 0.2596 | 0.8431 | 0.7633 | 0.8012 | 0.9287 |
65
- | 0.3088 | 0.2614 | 80 | 0.2272 | 0.7494 | 0.8516 | 0.7972 | 0.9348 |
66
- | 0.2435 | 0.3268 | 100 | 0.1650 | 0.8345 | 0.8900 | 0.8613 | 0.9523 |
67
- | 0.2486 | 0.3922 | 120 | 0.1558 | 0.8411 | 0.8985 | 0.8689 | 0.9543 |
68
- | 0.1792 | 0.4575 | 140 | 0.1378 | 0.8868 | 0.8900 | 0.8884 | 0.9598 |
69
- | 0.1801 | 0.5229 | 160 | 0.1194 | 0.8912 | 0.9129 | 0.9019 | 0.9656 |
70
- | 0.1681 | 0.5882 | 180 | 0.1281 | 0.8768 | 0.9301 | 0.9027 | 0.9641 |
71
- | 0.1445 | 0.6536 | 200 | 0.1114 | 0.8943 | 0.9167 | 0.9054 | 0.9655 |
72
- | 0.1404 | 0.7190 | 220 | 0.0912 | 0.9165 | 0.9214 | 0.9189 | 0.9719 |
73
- | 0.1376 | 0.7843 | 240 | 0.0984 | 0.9123 | 0.9376 | 0.9248 | 0.9724 |
74
- | 0.1344 | 0.8497 | 260 | 0.1054 | 0.8977 | 0.9327 | 0.9149 | 0.9683 |
75
- | 0.1531 | 0.9150 | 280 | 0.1452 | 0.8230 | 0.8950 | 0.8575 | 0.9557 |
76
- | 0.1691 | 0.9804 | 300 | 0.1007 | 0.9094 | 0.9119 | 0.9107 | 0.9681 |
77
- | 0.1304 | 1.0458 | 320 | 0.1022 | 0.8834 | 0.9402 | 0.9109 | 0.9687 |
78
- | 0.1056 | 1.1111 | 340 | 0.1020 | 0.8988 | 0.9447 | 0.9212 | 0.9705 |
79
- | 0.1078 | 1.1765 | 360 | 0.0957 | 0.9015 | 0.9483 | 0.9243 | 0.9724 |
80
- | 0.1036 | 1.2418 | 380 | 0.0851 | 0.9242 | 0.9384 | 0.9312 | 0.9762 |
81
- | 0.1226 | 1.3072 | 400 | 0.0885 | 0.8955 | 0.9478 | 0.9209 | 0.9722 |
82
- | 0.1135 | 1.3725 | 420 | 0.0981 | 0.8813 | 0.9206 | 0.9005 | 0.9680 |
83
- | 0.1032 | 1.4379 | 440 | 0.0866 | 0.9180 | 0.9431 | 0.9304 | 0.9751 |
84
- | 0.101 | 1.5033 | 460 | 0.0790 | 0.9284 | 0.9376 | 0.9330 | 0.9752 |
85
- | 0.1009 | 1.5686 | 480 | 0.0876 | 0.9072 | 0.9521 | 0.9291 | 0.9736 |
86
- | 0.0932 | 1.6340 | 500 | 0.0845 | 0.9134 | 0.9488 | 0.9307 | 0.9743 |
87
- | 0.0807 | 1.6993 | 520 | 0.0848 | 0.9130 | 0.9585 | 0.9352 | 0.9758 |
88
- | 0.0914 | 1.7647 | 540 | 0.0789 | 0.9258 | 0.9439 | 0.9347 | 0.9772 |
89
- | 0.1015 | 1.8301 | 560 | 0.0899 | 0.9080 | 0.9574 | 0.9321 | 0.9739 |
90
- | 0.0948 | 1.8954 | 580 | 0.0945 | 0.9033 | 0.9583 | 0.9300 | 0.9720 |
91
- | 0.0954 | 1.9608 | 600 | 0.0827 | 0.9182 | 0.9499 | 0.9338 | 0.9760 |
92
- | 0.0787 | 2.0261 | 620 | 0.0814 | 0.9197 | 0.9525 | 0.9358 | 0.9761 |
93
- | 0.0721 | 2.0915 | 640 | 0.0762 | 0.9268 | 0.9506 | 0.9385 | 0.9774 |
94
- | 0.058 | 2.1569 | 660 | 0.0731 | 0.9276 | 0.9476 | 0.9375 | 0.9774 |
95
- | 0.0812 | 2.2222 | 680 | 0.0733 | 0.9310 | 0.9557 | 0.9432 | 0.9789 |
96
- | 0.0716 | 2.2876 | 700 | 0.0780 | 0.9209 | 0.9464 | 0.9335 | 0.9763 |
97
- | 0.0574 | 2.3529 | 720 | 0.0728 | 0.9361 | 0.9473 | 0.9417 | 0.9791 |
98
- | 0.0665 | 2.4183 | 740 | 0.0756 | 0.9265 | 0.9443 | 0.9353 | 0.9781 |
99
- | 0.0986 | 2.4837 | 760 | 0.0741 | 0.9297 | 0.9556 | 0.9425 | 0.9799 |
100
- | 0.0724 | 2.5490 | 780 | 0.0754 | 0.9316 | 0.9546 | 0.9430 | 0.9793 |
101
- | 0.0738 | 2.6144 | 800 | 0.0717 | 0.9358 | 0.9514 | 0.9436 | 0.9794 |
102
- | 0.0641 | 2.6797 | 820 | 0.0725 | 0.9370 | 0.9493 | 0.9431 | 0.9793 |
103
- | 0.0739 | 2.7451 | 840 | 0.0735 | 0.9231 | 0.9518 | 0.9372 | 0.9780 |
104
- | 0.0644 | 2.8105 | 860 | 0.0753 | 0.9280 | 0.9589 | 0.9432 | 0.9795 |
105
- | 0.0682 | 2.8758 | 880 | 0.0714 | 0.9319 | 0.9533 | 0.9425 | 0.9796 |
106
- | 0.0607 | 2.9412 | 900 | 0.0753 | 0.9254 | 0.9573 | 0.9411 | 0.9783 |
107
- | 0.0604 | 3.0065 | 920 | 0.0712 | 0.9336 | 0.9597 | 0.9465 | 0.9807 |
108
- | 0.0469 | 3.0719 | 940 | 0.0731 | 0.9278 | 0.9588 | 0.9431 | 0.9793 |
109
- | 0.0522 | 3.1373 | 960 | 0.0836 | 0.9187 | 0.9576 | 0.9378 | 0.9764 |
110
- | 0.0482 | 3.2026 | 980 | 0.0734 | 0.9346 | 0.9562 | 0.9453 | 0.9800 |
111
- | 0.0586 | 3.2680 | 1000 | 0.0743 | 0.9315 | 0.9508 | 0.9411 | 0.9786 |
112
- | 0.0557 | 3.3333 | 1020 | 0.0751 | 0.9304 | 0.9532 | 0.9416 | 0.9794 |
113
- | 0.0585 | 3.3987 | 1040 | 0.0871 | 0.9046 | 0.9508 | 0.9271 | 0.9739 |
114
- | 0.0784 | 3.4641 | 1060 | 0.0892 | 0.9120 | 0.9307 | 0.9213 | 0.9725 |
115
- | 0.0701 | 3.5294 | 1080 | 0.1684 | 0.8811 | 0.8685 | 0.8747 | 0.9626 |
116
- | 0.086 | 3.5948 | 1100 | 0.0841 | 0.9093 | 0.9478 | 0.9282 | 0.9735 |
117
- | 0.0542 | 3.6601 | 1120 | 0.0782 | 0.9199 | 0.9536 | 0.9364 | 0.9774 |
118
- | 0.0724 | 3.7255 | 1140 | 0.0730 | 0.9293 | 0.9493 | 0.9392 | 0.9785 |
119
- | 0.0586 | 3.7908 | 1160 | 0.0768 | 0.9190 | 0.9515 | 0.9350 | 0.9768 |
120
- | 0.0675 | 3.8562 | 1180 | 0.0791 | 0.9230 | 0.9569 | 0.9396 | 0.9780 |
121
- | 0.0645 | 3.9216 | 1200 | 0.0821 | 0.9260 | 0.9527 | 0.9392 | 0.9773 |
122
- | 0.0678 | 3.9869 | 1220 | 0.0733 | 0.9245 | 0.9527 | 0.9384 | 0.9783 |
123
- | 0.0464 | 4.0523 | 1240 | 0.0715 | 0.9354 | 0.9577 | 0.9464 | 0.9807 |
124
- | 0.0375 | 4.1176 | 1260 | 0.0723 | 0.9325 | 0.9554 | 0.9438 | 0.9801 |
125
- | 0.043 | 4.1830 | 1280 | 0.0696 | 0.9378 | 0.9623 | 0.9499 | 0.9816 |
126
- | 0.0472 | 4.2484 | 1300 | 0.0738 | 0.9338 | 0.9540 | 0.9438 | 0.9793 |
127
- | 0.0423 | 4.3137 | 1320 | 0.0712 | 0.9435 | 0.9513 | 0.9474 | 0.9814 |
128
- | 0.05 | 4.3791 | 1340 | 0.0700 | 0.9395 | 0.9579 | 0.9486 | 0.9815 |
129
- | 0.0404 | 4.4444 | 1360 | 0.0748 | 0.9255 | 0.9558 | 0.9404 | 0.9789 |
130
- | 0.0341 | 4.5098 | 1380 | 0.0783 | 0.9253 | 0.9572 | 0.9409 | 0.9789 |
131
- | 0.0477 | 4.5752 | 1400 | 0.0754 | 0.9319 | 0.9514 | 0.9415 | 0.9798 |
132
- | 0.0479 | 4.6405 | 1420 | 0.0785 | 0.9242 | 0.9593 | 0.9414 | 0.9789 |
133
- | 0.0404 | 4.7059 | 1440 | 0.0764 | 0.9313 | 0.9515 | 0.9413 | 0.9788 |
134
- | 0.0477 | 4.7712 | 1460 | 0.0755 | 0.9320 | 0.9577 | 0.9447 | 0.9797 |
135
- | 0.0446 | 4.8366 | 1480 | 0.0734 | 0.9353 | 0.9567 | 0.9459 | 0.9801 |
136
- | 0.0412 | 4.9020 | 1500 | 0.0751 | 0.9303 | 0.9557 | 0.9429 | 0.9794 |
137
- | 0.048 | 4.9673 | 1520 | 0.0736 | 0.9326 | 0.9561 | 0.9442 | 0.9802 |
138
- | 0.0409 | 5.0327 | 1540 | 0.0774 | 0.9292 | 0.9552 | 0.9420 | 0.9792 |
139
- | 0.0339 | 5.0980 | 1560 | 0.0757 | 0.9336 | 0.9544 | 0.9439 | 0.9802 |
140
- | 0.0465 | 5.1634 | 1580 | 0.0755 | 0.9317 | 0.9575 | 0.9445 | 0.9798 |
141
- | 0.037 | 5.2288 | 1600 | 0.0766 | 0.9277 | 0.9562 | 0.9417 | 0.9788 |
142
- | 0.0342 | 5.2941 | 1620 | 0.0775 | 0.9284 | 0.9540 | 0.9410 | 0.9788 |
143
- | 0.0317 | 5.3595 | 1640 | 0.0766 | 0.9340 | 0.9554 | 0.9446 | 0.9800 |
144
- | 0.0366 | 5.4248 | 1660 | 0.0744 | 0.9343 | 0.9545 | 0.9443 | 0.9801 |
145
- | 0.0412 | 5.4902 | 1680 | 0.0747 | 0.9331 | 0.9563 | 0.9446 | 0.9801 |
146
- | 0.0352 | 5.5556 | 1700 | 0.0723 | 0.9378 | 0.9549 | 0.9463 | 0.9809 |
147
- | 0.0368 | 5.6209 | 1720 | 0.0736 | 0.9319 | 0.9542 | 0.9429 | 0.9798 |
148
- | 0.0344 | 5.6863 | 1740 | 0.0739 | 0.9328 | 0.9540 | 0.9433 | 0.9798 |
149
- | 0.0334 | 5.7516 | 1760 | 0.0735 | 0.9324 | 0.9537 | 0.9429 | 0.9799 |
150
- | 0.0329 | 5.8170 | 1780 | 0.0743 | 0.9321 | 0.9562 | 0.9440 | 0.9800 |
151
- | 0.0354 | 5.8824 | 1800 | 0.0741 | 0.9329 | 0.9556 | 0.9441 | 0.9799 |
152
- | 0.0292 | 5.9477 | 1820 | 0.0738 | 0.9331 | 0.9552 | 0.9441 | 0.9799 |
153
 
154
 
155
  ### Framework versions
156
 
157
- - PEFT 0.13.2
158
  - Transformers 4.47.1
159
  - Pytorch 2.5.1+cu121
160
  - Datasets 3.2.0
 
23
 
24
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
25
  It achieves the following results on the evaluation set:
26
+ - Loss: 0.0688
27
+ - Precision: 0.9390
28
+ - Recall: 0.9598
29
+ - F1: 0.9493
30
+ - Accuracy: 0.9821
31
 
32
  ## Model description
33
 
 
52
  - seed: 42
53
  - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
  - lr_scheduler_type: linear
55
+ - training_steps: 1300
56
  - mixed_precision_training: Native AMP
57
 
58
  ### Training results
59
 
60
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
61
  |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
62
+ | 2.4626 | 0.0654 | 20 | 0.9421 | 0.4829 | 0.1165 | 0.1877 | 0.7544 |
63
+ | 0.7547 | 0.1307 | 40 | 0.3993 | 0.7557 | 0.6814 | 0.7166 | 0.8940 |
64
+ | 0.4022 | 0.1961 | 60 | 0.2119 | 0.8276 | 0.8158 | 0.8217 | 0.9396 |
65
+ | 0.2732 | 0.2614 | 80 | 0.1631 | 0.8250 | 0.8746 | 0.8491 | 0.9512 |
66
+ | 0.2083 | 0.3268 | 100 | 0.1423 | 0.8591 | 0.9037 | 0.8808 | 0.9576 |
67
+ | 0.2216 | 0.3922 | 120 | 0.1392 | 0.8562 | 0.9147 | 0.8845 | 0.9572 |
68
+ | 0.1787 | 0.4575 | 140 | 0.1114 | 0.8940 | 0.9173 | 0.9055 | 0.9664 |
69
+ | 0.1642 | 0.5229 | 160 | 0.1191 | 0.8840 | 0.9270 | 0.9050 | 0.9657 |
70
+ | 0.1557 | 0.5882 | 180 | 0.1089 | 0.8825 | 0.9284 | 0.9049 | 0.9665 |
71
+ | 0.1406 | 0.6536 | 200 | 0.0982 | 0.8967 | 0.9279 | 0.9121 | 0.9700 |
72
+ | 0.1359 | 0.7190 | 220 | 0.0879 | 0.9182 | 0.9269 | 0.9225 | 0.9733 |
73
+ | 0.1272 | 0.7843 | 240 | 0.1047 | 0.8940 | 0.9506 | 0.9214 | 0.9697 |
74
+ | 0.1157 | 0.8497 | 260 | 0.0985 | 0.9198 | 0.9266 | 0.9232 | 0.9719 |
75
+ | 0.1191 | 0.9150 | 280 | 0.1166 | 0.8827 | 0.9427 | 0.9117 | 0.9656 |
76
+ | 0.1298 | 0.9804 | 300 | 0.0878 | 0.9211 | 0.9315 | 0.9263 | 0.9736 |
77
+ | 0.1107 | 1.0458 | 320 | 0.0834 | 0.9205 | 0.9512 | 0.9356 | 0.9762 |
78
+ | 0.0942 | 1.1111 | 340 | 0.0874 | 0.9097 | 0.9574 | 0.9329 | 0.9745 |
79
+ | 0.0979 | 1.1765 | 360 | 0.0771 | 0.9259 | 0.9518 | 0.9387 | 0.9779 |
80
+ | 0.0971 | 1.2418 | 380 | 0.0814 | 0.9280 | 0.9478 | 0.9378 | 0.9781 |
81
+ | 0.1053 | 1.3072 | 400 | 0.0804 | 0.9214 | 0.9399 | 0.9306 | 0.9761 |
82
+ | 0.1075 | 1.3725 | 420 | 0.0835 | 0.9083 | 0.9369 | 0.9224 | 0.9738 |
83
+ | 0.0893 | 1.4379 | 440 | 0.0773 | 0.9329 | 0.9469 | 0.9398 | 0.9784 |
84
+ | 0.09 | 1.5033 | 460 | 0.0737 | 0.9316 | 0.9522 | 0.9418 | 0.9787 |
85
+ | 0.0947 | 1.5686 | 480 | 0.0787 | 0.9141 | 0.9549 | 0.9340 | 0.9763 |
86
+ | 0.0907 | 1.6340 | 500 | 0.0813 | 0.9179 | 0.9522 | 0.9347 | 0.9770 |
87
+ | 0.0752 | 1.6993 | 520 | 0.0802 | 0.9130 | 0.9575 | 0.9347 | 0.9772 |
88
+ | 0.0801 | 1.7647 | 540 | 0.0703 | 0.9302 | 0.9530 | 0.9415 | 0.9797 |
89
+ | 0.092 | 1.8301 | 560 | 0.0739 | 0.9301 | 0.9513 | 0.9406 | 0.9785 |
90
+ | 0.0862 | 1.8954 | 580 | 0.0899 | 0.9034 | 0.9526 | 0.9274 | 0.9735 |
91
+ | 0.0869 | 1.9608 | 600 | 0.0782 | 0.9164 | 0.9510 | 0.9334 | 0.9765 |
92
+ | 0.0713 | 2.0261 | 620 | 0.0771 | 0.9225 | 0.9579 | 0.9399 | 0.9785 |
93
+ | 0.0635 | 2.0915 | 640 | 0.0729 | 0.9356 | 0.9524 | 0.9439 | 0.9797 |
94
+ | 0.0527 | 2.1569 | 660 | 0.0764 | 0.9088 | 0.9475 | 0.9277 | 0.9765 |
95
+ | 0.0738 | 2.2222 | 680 | 0.0747 | 0.9233 | 0.9576 | 0.9401 | 0.9783 |
96
+ | 0.0628 | 2.2876 | 700 | 0.0751 | 0.9334 | 0.9589 | 0.9460 | 0.9801 |
97
+ | 0.0574 | 2.3529 | 720 | 0.0713 | 0.9354 | 0.9580 | 0.9465 | 0.9807 |
98
+ | 0.0628 | 2.4183 | 740 | 0.0700 | 0.9347 | 0.9540 | 0.9443 | 0.9809 |
99
+ | 0.0771 | 2.4837 | 760 | 0.0707 | 0.9326 | 0.9607 | 0.9465 | 0.9811 |
100
+ | 0.068 | 2.5490 | 780 | 0.0753 | 0.9318 | 0.9648 | 0.9480 | 0.9807 |
101
+ | 0.0653 | 2.6144 | 800 | 0.0680 | 0.9400 | 0.9583 | 0.9491 | 0.9820 |
102
+ | 0.0567 | 2.6797 | 820 | 0.0762 | 0.9327 | 0.9540 | 0.9433 | 0.9791 |
103
+ | 0.066 | 2.7451 | 840 | 0.0719 | 0.9297 | 0.9570 | 0.9431 | 0.9805 |
104
+ | 0.0576 | 2.8105 | 860 | 0.0723 | 0.9360 | 0.9597 | 0.9477 | 0.9808 |
105
+ | 0.0608 | 2.8758 | 880 | 0.0744 | 0.9309 | 0.9566 | 0.9436 | 0.9791 |
106
+ | 0.0521 | 2.9412 | 900 | 0.0679 | 0.9355 | 0.9599 | 0.9475 | 0.9814 |
107
+ | 0.051 | 3.0065 | 920 | 0.0688 | 0.9373 | 0.9594 | 0.9482 | 0.9818 |
108
+ | 0.0444 | 3.0719 | 940 | 0.0723 | 0.9335 | 0.9607 | 0.9469 | 0.9814 |
109
+ | 0.0468 | 3.1373 | 960 | 0.0767 | 0.9246 | 0.9554 | 0.9397 | 0.9787 |
110
+ | 0.0433 | 3.2026 | 980 | 0.0681 | 0.9376 | 0.9591 | 0.9482 | 0.9819 |
111
+ | 0.0468 | 3.2680 | 1000 | 0.0722 | 0.9318 | 0.9589 | 0.9452 | 0.9808 |
112
+ | 0.0496 | 3.3333 | 1020 | 0.0708 | 0.9341 | 0.9496 | 0.9418 | 0.9803 |
113
+ | 0.0473 | 3.3987 | 1040 | 0.0699 | 0.9315 | 0.9666 | 0.9487 | 0.9819 |
114
+ | 0.0534 | 3.4641 | 1060 | 0.0675 | 0.9368 | 0.9569 | 0.9468 | 0.9819 |
115
+ | 0.0421 | 3.5294 | 1080 | 0.0698 | 0.9322 | 0.9564 | 0.9442 | 0.9809 |
116
+ | 0.0444 | 3.5948 | 1100 | 0.0715 | 0.9303 | 0.9539 | 0.9420 | 0.9799 |
117
+ | 0.0366 | 3.6601 | 1120 | 0.0671 | 0.9382 | 0.9615 | 0.9497 | 0.9823 |
118
+ | 0.0505 | 3.7255 | 1140 | 0.0687 | 0.9376 | 0.9554 | 0.9464 | 0.9814 |
119
+ | 0.0431 | 3.7908 | 1160 | 0.0698 | 0.9338 | 0.9594 | 0.9465 | 0.9813 |
120
+ | 0.0519 | 3.8562 | 1180 | 0.0696 | 0.9378 | 0.9604 | 0.9490 | 0.9820 |
121
+ | 0.0471 | 3.9216 | 1200 | 0.0712 | 0.9380 | 0.9599 | 0.9488 | 0.9817 |
122
+ | 0.0544 | 3.9869 | 1220 | 0.0688 | 0.9407 | 0.9588 | 0.9497 | 0.9819 |
123
+ | 0.0392 | 4.0523 | 1240 | 0.0688 | 0.9389 | 0.9599 | 0.9493 | 0.9822 |
124
+ | 0.0303 | 4.1176 | 1260 | 0.0698 | 0.9376 | 0.9601 | 0.9487 | 0.9817 |
125
+ | 0.0383 | 4.1830 | 1280 | 0.0689 | 0.9393 | 0.9605 | 0.9498 | 0.9821 |
126
+ | 0.0389 | 4.2484 | 1300 | 0.0688 | 0.9390 | 0.9598 | 0.9493 | 0.9821 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
 
129
  ### Framework versions
130
 
131
+ - PEFT 0.14.0
132
  - Transformers 4.47.1
133
  - Pytorch 2.5.1+cu121
134
  - Datasets 3.2.0