--- base_model: daveni/twitter-xlm-roberta-emotion-es tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xml-roberta-HU-Com results: [] --- # xml-roberta-HU-Com This model is a fine-tuned version of [daveni/twitter-xlm-roberta-emotion-es](https://huggingface.co/daveni/twitter-xlm-roberta-emotion-es) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3693 - Accuracy: 0.7911 - F1: 0.7440 - Precision: 0.7415 - Recall: 0.7466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6717 | 1.0 | 90 | 0.5918 | 0.6852 | 0.5272 | 0.6774 | 0.4315 | | 0.453 | 2.0 | 180 | 0.5358 | 0.7465 | 0.6403 | 0.7570 | 0.5548 | | 0.2631 | 3.0 | 270 | 0.7088 | 0.7744 | 0.7273 | 0.7152 | 0.7397 | | 0.1936 | 4.0 | 360 | 0.7078 | 0.7939 | 0.7566 | 0.7278 | 0.7877 | | 0.1273 | 5.0 | 450 | 1.1057 | 0.7772 | 0.7436 | 0.6988 | 0.7945 | | 0.066 | 6.0 | 540 | 1.1990 | 0.7799 | 0.7168 | 0.7519 | 0.6849 | | 0.0286 | 7.0 | 630 | 1.2457 | 0.7994 | 0.7584 | 0.7434 | 0.7740 | | 0.0261 | 8.0 | 720 | 1.3297 | 0.7799 | 0.7106 | 0.7638 | 0.6644 | | 0.0097 | 9.0 | 810 | 1.3733 | 0.7855 | 0.7354 | 0.7379 | 0.7329 | | 0.0071 | 10.0 | 900 | 1.3693 | 0.7911 | 0.7440 | 0.7415 | 0.7466 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.19.1 - Tokenizers 0.19.1