ravch commited on
Commit
e167f6a
·
verified ·
1 Parent(s): e5c80c9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:664
13
+ - loss:DenoisingAutoEncoderLoss
14
+ widget:
15
+ - source_sentence: of fresh for in for that,, stream_id
16
+ sentences:
17
+ - 'Number of functional/operational toilets for boys with disabilities or CWSN(Children
18
+ with special needs) '
19
+ - 'Indicates grant for sports and physical education expenditure (in Rs) spent by
20
+ the school during the financial year 2022-2023 under Samagra Shiksha, corresponding
21
+ to the udise_sch_code. '
22
+ - 'Number of fresh enrollments for transgenders in class 11 for that school. corresponding
23
+ to udise_sch_code, caste_id, stream_id. '
24
+ - source_sentence: Unique each associated . This in and.
25
+ sentences:
26
+ - 'classes in which language 3 i.e (''lang3'' column) is taught as a subject. Its
27
+ a comma seperated value. '
28
+ - 'Unique identifier code each school, associated with school_name in sch_master
29
+ table. This can be joined with udise_sch_code in sch_profile and sch_facility
30
+ tables. '
31
+ - 'Number of assessments happened for primary section/school '
32
+ - source_sentence: urinals
33
+ sentences:
34
+ - 'Unique identifier code for the schools providing vocational courses under nsqf
35
+ and where sectors are available, associated with school name in sch_master table.
36
+ This can be joined with udise_sch_code in sch_profile and sch_facility tables. '
37
+ - 'Indicates whether there is a reading corner/space/room in school. Can only be
38
+ [''Yes'',''No''] '
39
+ - 'Number of functional/operational urinals for boys '
40
+ - source_sentence: total of in-service training by of that from district and training)
41
+ the tch_code_state
42
+ sentences:
43
+ - 'Indicates total days of in-service training received by the teacher of that school
44
+ from district institute of education and training(diet), corresponding to the
45
+ udise_sch_code, tch_name, tch_code_state. '
46
+ - 'Unique identifier code for each school. This column is crucial for aggregating
47
+ or analyzing data at the school level, such as school-wise attendance, performance
48
+ metrics, or demographic information. '
49
+ - 'Indicates whether it is a special school, specifically for disabled students.
50
+ Is school CWSN ( Children with Special Needs ). This can only be one of 2 values:[''Yes'',''No''] '
51
+ - source_sentence: The teacher_id column . This essential related teacher absenteeism
52
+ or will column
53
+ sentences:
54
+ - 'Indicates Urban local body ID as per LGD - Local Government Directory where the
55
+ school is present, related to ''lgd_urban_local_body_name'' '
56
+ - 'Number of pucca classrooms in good condition in school '
57
+ - 'The teacher_id column is a unique identifier used to represent individual teachers.
58
+ This column is essential for retrieving teacher-specific information.Queries related
59
+ to teacher attendance, absenteeism, or any teacher-level analysis will likely
60
+ require this column. '
61
+ ---
62
+
63
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
64
+
65
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
66
+
67
+ ## Model Details
68
+
69
+ ### Model Description
70
+ - **Model Type:** Sentence Transformer
71
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
72
+ - **Maximum Sequence Length:** 512 tokens
73
+ - **Output Dimensionality:** 384 tokens
74
+ - **Similarity Function:** Cosine Similarity
75
+ <!-- - **Training Dataset:** Unknown -->
76
+ <!-- - **Language:** Unknown -->
77
+ <!-- - **License:** Unknown -->
78
+
79
+ ### Model Sources
80
+
81
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
82
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
83
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
84
+
85
+ ### Full Model Architecture
86
+
87
+ ```
88
+ SentenceTransformer(
89
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
90
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
91
+ (2): Normalize()
92
+ )
93
+ ```
94
+
95
+ ## Usage
96
+
97
+ ### Direct Usage (Sentence Transformers)
98
+
99
+ First install the Sentence Transformers library:
100
+
101
+ ```bash
102
+ pip install -U sentence-transformers
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+ ```python
107
+ from sentence_transformers import SentenceTransformer
108
+
109
+ # Download from the 🤗 Hub
110
+ model = SentenceTransformer("ravch/fine_tuned_bge_small_en_v1.5_another_data_formate")
111
+ # Run inference
112
+ sentences = [
113
+ 'The teacher_id column . This essential related teacher absenteeism or will column',
114
+ 'The teacher_id column is a unique identifier used to represent individual teachers. This column is essential for retrieving teacher-specific information.Queries related to teacher attendance, absenteeism, or any teacher-level analysis will likely require this column. ',
115
+ "Indicates Urban local body ID as per LGD - Local Government Directory where the school is present, related to 'lgd_urban_local_body_name' ",
116
+ ]
117
+ embeddings = model.encode(sentences)
118
+ print(embeddings.shape)
119
+ # [3, 384]
120
+
121
+ # Get the similarity scores for the embeddings
122
+ similarities = model.similarity(embeddings, embeddings)
123
+ print(similarities.shape)
124
+ # [3, 3]
125
+ ```
126
+
127
+ <!--
128
+ ### Direct Usage (Transformers)
129
+
130
+ <details><summary>Click to see the direct usage in Transformers</summary>
131
+
132
+ </details>
133
+ -->
134
+
135
+ <!--
136
+ ### Downstream Usage (Sentence Transformers)
137
+
138
+ You can finetune this model on your own dataset.
139
+
140
+ <details><summary>Click to expand</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Out-of-Scope Use
147
+
148
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
149
+ -->
150
+
151
+ <!--
152
+ ## Bias, Risks and Limitations
153
+
154
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
155
+ -->
156
+
157
+ <!--
158
+ ### Recommendations
159
+
160
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
161
+ -->
162
+
163
+ ## Training Details
164
+
165
+ ### Training Dataset
166
+
167
+ #### Unnamed Dataset
168
+
169
+
170
+ * Size: 664 training samples
171
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
172
+ * Approximate statistics based on the first 1000 samples:
173
+ | | sentence_0 | sentence_1 |
174
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
175
+ | type | string | string |
176
+ | details | <ul><li>min: 3 tokens</li><li>mean: 15.88 tokens</li><li>max: 127 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 36.37 tokens</li><li>max: 311 tokens</li></ul> |
177
+ * Samples:
178
+ | sentence_0 | sentence_1 |
179
+ |:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
180
+ | <code>Number of Girls Defense</code> | <code>Number of Girls Student provided Self Defense training </code> |
181
+ | <code>whether is While filtering, must 0 (int active.</code> | <code>Indicate whether school is active or inactive. While filtering only consider active schools, but When asked for total schools must consider active and inactive schools. 0(int) indicates active schools. </code> |
182
+ | <code>classes in which language i.e 'lang2 as a subject a comma seperated</code> | <code>classes in which language 2 i.e ('lang2' column) is taught as a subject. Its a comma seperated value. </code> |
183
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
184
+
185
+ ### Training Hyperparameters
186
+ #### Non-Default Hyperparameters
187
+
188
+ - `num_train_epochs`: 50
189
+ - `multi_dataset_batch_sampler`: round_robin
190
+
191
+ #### All Hyperparameters
192
+ <details><summary>Click to expand</summary>
193
+
194
+ - `overwrite_output_dir`: False
195
+ - `do_predict`: False
196
+ - `eval_strategy`: no
197
+ - `prediction_loss_only`: True
198
+ - `per_device_train_batch_size`: 8
199
+ - `per_device_eval_batch_size`: 8
200
+ - `per_gpu_train_batch_size`: None
201
+ - `per_gpu_eval_batch_size`: None
202
+ - `gradient_accumulation_steps`: 1
203
+ - `eval_accumulation_steps`: None
204
+ - `learning_rate`: 5e-05
205
+ - `weight_decay`: 0.0
206
+ - `adam_beta1`: 0.9
207
+ - `adam_beta2`: 0.999
208
+ - `adam_epsilon`: 1e-08
209
+ - `max_grad_norm`: 1
210
+ - `num_train_epochs`: 50
211
+ - `max_steps`: -1
212
+ - `lr_scheduler_type`: linear
213
+ - `lr_scheduler_kwargs`: {}
214
+ - `warmup_ratio`: 0.0
215
+ - `warmup_steps`: 0
216
+ - `log_level`: passive
217
+ - `log_level_replica`: warning
218
+ - `log_on_each_node`: True
219
+ - `logging_nan_inf_filter`: True
220
+ - `save_safetensors`: True
221
+ - `save_on_each_node`: False
222
+ - `save_only_model`: False
223
+ - `restore_callback_states_from_checkpoint`: False
224
+ - `no_cuda`: False
225
+ - `use_cpu`: False
226
+ - `use_mps_device`: False
227
+ - `seed`: 42
228
+ - `data_seed`: None
229
+ - `jit_mode_eval`: False
230
+ - `use_ipex`: False
231
+ - `bf16`: False
232
+ - `fp16`: False
233
+ - `fp16_opt_level`: O1
234
+ - `half_precision_backend`: auto
235
+ - `bf16_full_eval`: False
236
+ - `fp16_full_eval`: False
237
+ - `tf32`: None
238
+ - `local_rank`: 0
239
+ - `ddp_backend`: None
240
+ - `tpu_num_cores`: None
241
+ - `tpu_metrics_debug`: False
242
+ - `debug`: []
243
+ - `dataloader_drop_last`: False
244
+ - `dataloader_num_workers`: 0
245
+ - `dataloader_prefetch_factor`: None
246
+ - `past_index`: -1
247
+ - `disable_tqdm`: False
248
+ - `remove_unused_columns`: True
249
+ - `label_names`: None
250
+ - `load_best_model_at_end`: False
251
+ - `ignore_data_skip`: False
252
+ - `fsdp`: []
253
+ - `fsdp_min_num_params`: 0
254
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
255
+ - `fsdp_transformer_layer_cls_to_wrap`: None
256
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
257
+ - `deepspeed`: None
258
+ - `label_smoothing_factor`: 0.0
259
+ - `optim`: adamw_torch
260
+ - `optim_args`: None
261
+ - `adafactor`: False
262
+ - `group_by_length`: False
263
+ - `length_column_name`: length
264
+ - `ddp_find_unused_parameters`: None
265
+ - `ddp_bucket_cap_mb`: None
266
+ - `ddp_broadcast_buffers`: False
267
+ - `dataloader_pin_memory`: True
268
+ - `dataloader_persistent_workers`: False
269
+ - `skip_memory_metrics`: True
270
+ - `use_legacy_prediction_loop`: False
271
+ - `push_to_hub`: False
272
+ - `resume_from_checkpoint`: None
273
+ - `hub_model_id`: None
274
+ - `hub_strategy`: every_save
275
+ - `hub_private_repo`: False
276
+ - `hub_always_push`: False
277
+ - `gradient_checkpointing`: False
278
+ - `gradient_checkpointing_kwargs`: None
279
+ - `include_inputs_for_metrics`: False
280
+ - `eval_do_concat_batches`: True
281
+ - `fp16_backend`: auto
282
+ - `push_to_hub_model_id`: None
283
+ - `push_to_hub_organization`: None
284
+ - `mp_parameters`:
285
+ - `auto_find_batch_size`: False
286
+ - `full_determinism`: False
287
+ - `torchdynamo`: None
288
+ - `ray_scope`: last
289
+ - `ddp_timeout`: 1800
290
+ - `torch_compile`: False
291
+ - `torch_compile_backend`: None
292
+ - `torch_compile_mode`: None
293
+ - `dispatch_batches`: None
294
+ - `split_batches`: None
295
+ - `include_tokens_per_second`: False
296
+ - `include_num_input_tokens_seen`: False
297
+ - `neftune_noise_alpha`: None
298
+ - `optim_target_modules`: None
299
+ - `batch_eval_metrics`: False
300
+ - `eval_on_start`: False
301
+ - `batch_sampler`: batch_sampler
302
+ - `multi_dataset_batch_sampler`: round_robin
303
+
304
+ </details>
305
+
306
+ ### Training Logs
307
+ | Epoch | Step | Training Loss |
308
+ |:-------:|:----:|:-------------:|
309
+ | 6.0241 | 500 | 2.0771 |
310
+ | 12.0482 | 1000 | 0.4663 |
311
+ | 18.0723 | 1500 | 0.2979 |
312
+ | 24.0964 | 2000 | 0.2476 |
313
+ | 30.1205 | 2500 | 0.2341 |
314
+ | 36.1446 | 3000 | 0.2321 |
315
+ | 42.1687 | 3500 | 0.2116 |
316
+ | 48.1928 | 4000 | 0.2012 |
317
+
318
+
319
+ ### Framework Versions
320
+ - Python: 3.10.12
321
+ - Sentence Transformers: 3.0.1
322
+ - Transformers: 4.42.4
323
+ - PyTorch: 2.3.1+cu121
324
+ - Accelerate: 0.32.1
325
+ - Datasets: 2.21.0
326
+ - Tokenizers: 0.19.1
327
+
328
+ ## Citation
329
+
330
+ ### BibTeX
331
+
332
+ #### Sentence Transformers
333
+ ```bibtex
334
+ @inproceedings{reimers-2019-sentence-bert,
335
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
336
+ author = "Reimers, Nils and Gurevych, Iryna",
337
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
338
+ month = "11",
339
+ year = "2019",
340
+ publisher = "Association for Computational Linguistics",
341
+ url = "https://arxiv.org/abs/1908.10084",
342
+ }
343
+ ```
344
+
345
+ #### DenoisingAutoEncoderLoss
346
+ ```bibtex
347
+ @inproceedings{wang-2021-TSDAE,
348
+ title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
349
+ author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
350
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
351
+ month = nov,
352
+ year = "2021",
353
+ address = "Punta Cana, Dominican Republic",
354
+ publisher = "Association for Computational Linguistics",
355
+ pages = "671--688",
356
+ url = "https://arxiv.org/abs/2104.06979",
357
+ }
358
+ ```
359
+
360
+ <!--
361
+ ## Glossary
362
+
363
+ *Clearly define terms in order to be accessible across audiences.*
364
+ -->
365
+
366
+ <!--
367
+ ## Model Card Authors
368
+
369
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
370
+ -->
371
+
372
+ <!--
373
+ ## Model Card Contact
374
+
375
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
376
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.42.4",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6a6fc318ca266d083a705c4d47235bc0682353b7e5732c35425b405eee87136
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff