File size: 2,469 Bytes
a036366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a4c0e
 
 
 
 
a036366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a4c0e
a036366
 
 
 
 
 
63a4c0e
 
 
 
 
 
 
 
 
 
a036366
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4256
- Rouge1: 19.6262
- Rouge2: 3.6874
- Rougel: 17.4155
- Rougelsum: 17.5472
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.8869        | 1.0   | 584  | 2.6152          | 17.1618 | 2.621  | 15.8121 | 15.8907   | 19.0    |
| 2.829         | 2.0   | 1168 | 2.5615          | 17.486  | 2.799  | 15.9032 | 15.9821   | 19.0    |
| 2.7721        | 3.0   | 1752 | 2.5222          | 18.2742 | 3.0877 | 16.5789 | 16.6729   | 19.0    |
| 2.7416        | 4.0   | 2336 | 2.4921          | 18.8283 | 3.362  | 16.858  | 16.9738   | 19.0    |
| 2.7063        | 5.0   | 2920 | 2.4690          | 18.6113 | 3.2539 | 16.6872 | 16.7919   | 19.0    |
| 2.6686        | 6.0   | 3504 | 2.4528          | 19.2086 | 3.5071 | 17.1746 | 17.2843   | 19.0    |
| 2.652         | 7.0   | 4088 | 2.4403          | 19.3553 | 3.5814 | 17.1871 | 17.2981   | 19.0    |
| 2.6338        | 8.0   | 4672 | 2.4319          | 19.6779 | 3.6693 | 17.4134 | 17.529    | 19.0    |
| 2.6377        | 9.0   | 5256 | 2.4270          | 19.6024 | 3.6557 | 17.3604 | 17.4862   | 19.0    |
| 2.6281        | 10.0  | 5840 | 2.4256          | 19.6262 | 3.6874 | 17.4155 | 17.5472   | 19.0    |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.1