File size: 1,754 Bytes
a036366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-xsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6938
- Rouge1: 16.5765
- Rouge2: 2.4121
- Rougel: 15.4248
- Rougelsum: 15.4769
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 3.1215        | 1.0   | 584  | 2.7743          | 16.684  | 2.4322 | 15.4933 | 15.4944   | 19.0    |
| 3.0129        | 2.0   | 1168 | 2.7121          | 16.4123 | 2.4008 | 15.2938 | 15.3283   | 19.0    |
| 2.9533        | 3.0   | 1752 | 2.6938          | 16.5765 | 2.4121 | 15.4248 | 15.4769   | 19.0    |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.1