Upload PPO LunarLander-v2 trained agent
Browse files- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +91 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- results.json +1 -0
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6822212761ecee36bb6b449d59a46e17a0d2e7ae45ee854affed806b4d77e7cd
|
3 |
+
size 146352
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f5f2525f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f5f252680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f5f252710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f5f2527a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5f5f252830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5f5f2528c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f5f252950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5f5f2529e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f5f252a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f5f252b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f5f252b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5f603bcb00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672806257244823431,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVnwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL3JheWVkL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.015808000000000044,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR3U6kHVKb0CUhpRSlIwBbJRNkQGMAXSUR0B5+p1HOKO1dX2UKGgGaAloD0MIlgfpKXJ+cECUhpRSlGgVTXMBaBZHQHn8wSFoL5R1fZQoaAZoCWgPQwhl4lZBDBdyQJSGlFKUaBVNRwFoFkdAegOo0ALiM3V9lChoBmgJaA9DCErP9BLjBnBAlIaUUpRoFU1lAWgWR0B6BTAqNIbwdX2UKGgGaAloD0MIa5kMx/PPb0CUhpRSlGgVTU0BaBZHQHoFsawUxmF1fZQoaAZoCWgPQwg6CDpalcZxQJSGlFKUaBVNRQFoFkdAegnPJq7AcnV9lChoBmgJaA9DCBwJNNiUoXFAlIaUUpRoFU3bAWgWR0B6Cfl5nlGPdX2UKGgGaAloD0MIp1t2iL9wcECUhpRSlGgVTYcBaBZHQHoOvaDf3vh1fZQoaAZoCWgPQwitFAK5RG1wQJSGlFKUaBVNBQJoFkdAeg8Q+UyHmHV9lChoBmgJaA9DCNKPhlPmKGxAlIaUUpRoFU0mAmgWR0B6DyZgG8mKdX2UKGgGaAloD0MIg7709iekcECUhpRSlGgVTakBaBZHQHoPR42S+xp1fZQoaAZoCWgPQwglrfiGgipwQJSGlFKUaBVNFwJoFkdAeg+LORkmQnV9lChoBmgJaA9DCE6XxcTmb3BAlIaUUpRoFU1oAWgWR0B6E6SxJNCadX2UKGgGaAloD0MIgZICC+BNbECUhpRSlGgVTaQBaBZHQHoT2u5jH4p1fZQoaAZoCWgPQwim1vuNdntwQJSGlFKUaBVNWgFoFkdAehTvWpZOi3V9lChoBmgJaA9DCL/v37w4JXFAlIaUUpRoFU0FAmgWR0B6FWZH/cWTdX2UKGgGaAloD0MIGedvQmEMcECUhpRSlGgVTWEBaBZHQHoXDqv/zat1fZQoaAZoCWgPQwgEq+rltw5xQJSGlFKUaBVNNwFoFkdAehl+nqFAV3V9lChoBmgJaA9DCG/YtigzgHBAlIaUUpRoFU1vAWgWR0B6HnCTEBKddX2UKGgGaAloD0MIr1+wG7adbkCUhpRSlGgVTWUDaBZHQHofSk43m3h1fZQoaAZoCWgPQwjikXh5OnZuQJSGlFKUaBVNXwFoFkdAeiGAVfu1GHV9lChoBmgJaA9DCKypLAp7zXFAlIaUUpRoFU14AWgWR0B6RTHMlkYodX2UKGgGaAloD0MIyaoINxldcECUhpRSlGgVTXcBaBZHQHpFtGus90R1fZQoaAZoCWgPQwgVViqoqKNvQJSGlFKUaBVNQgFoFkdAekdV0tAcDXV9lChoBmgJaA9DCLVug9ovs3JAlIaUUpRoFU2QAWgWR0B6SC54GD+SdX2UKGgGaAloD0MIIJxPHev9cECUhpRSlGgVTcoBaBZHQHpMOR9w3o91fZQoaAZoCWgPQwiwcJLmD+BwQJSGlFKUaBVNEAJoFkdAekyofCAMD3V9lChoBmgJaA9DCPPHtDYNPHJAlIaUUpRoFU2cAWgWR0B6T3GyX2M9dX2UKGgGaAloD0MICAYQPpQTbECUhpRSlGgVTW8CaBZHQHpPt+b3Gn51fZQoaAZoCWgPQwgMryR5Lm9tQJSGlFKUaBVNYgFoFkdAelD2zfJmunV9lChoBmgJaA9DCE8jLZW340dAlIaUUpRoFU0hAWgWR0B6UWcOLBKudX2UKGgGaAloD0MI9FMcB17bQkCUhpRSlGgVTRcBaBZHQHpRdlEqlP91fZQoaAZoCWgPQwi6TE2CN59wQJSGlFKUaBVN0gFoFkdAelGHTZxrBXV9lChoBmgJaA9DCG3+X3VkpnBAlIaUUpRoFU3dAWgWR0B6VWHP/rB1dX2UKGgGaAloD0MIQpPEknK7cECUhpRSlGgVTUACaBZHQHpaFcyFfzB1fZQoaAZoCWgPQwhGmKJcmqlpQJSGlFKUaBVNrAJoFkdAelqXaJyhjHV9lChoBmgJaA9DCHIW9rQD6XBAlIaUUpRoFU1IAWgWR0B6XAu9OARTdX2UKGgGaAloD0MI+5KNB9sAbECUhpRSlGgVTV0BaBZHQHpe5N47ihp1fZQoaAZoCWgPQwjrNqj9FqdwQJSGlFKUaBVNYAFoFkdAel/UHpr1unV9lChoBmgJaA9DCB6ILNKEnXJAlIaUUpRoFU3+AWgWR0B6Yn8fms/6dX2UKGgGaAloD0MIwlHy6pxNckCUhpRSlGgVTSkBaBZHQHpi7Yf4h2Z1fZQoaAZoCWgPQwhFhH8RtI9tQJSGlFKUaBVNYQFoFkdAemOdO6/Zd3V9lChoBmgJaA9DCC47xD9sgmtAlIaUUpRoFU3GAWgWR0B6ZHpIMBp6dX2UKGgGaAloD0MIblFmg4whcECUhpRSlGgVTYoBaBZHQHpmbdrO7g91fZQoaAZoCWgPQwhpjNZR1SVwQJSGlFKUaBVNTgFoFkdAemcfywwCbXV9lChoBmgJaA9DCPHwngNL+W5AlIaUUpRoFU1sAWgWR0B6Zzw8W9DhdX2UKGgGaAloD0MIb9V1qKaacUCUhpRSlGgVTWEBaBZHQHpnpl4C6pZ1fZQoaAZoCWgPQwiamZmZmSFtQJSGlFKUaBVNdAFoFkdAemjTGo73f3V9lChoBmgJaA9DCMfWM4QjQHJAlIaUUpRoFU2XAWgWR0B6am++M6zWdX2UKGgGaAloD0MI/+kGCryDbUCUhpRSlGgVTb4BaBZHQHpw6BRQ7911fZQoaAZoCWgPQwiGVidn6FNwQJSGlFKUaBVNRgFoFkdAenIsWweNk3V9lChoBmgJaA9DCLudfeXBJnBAlIaUUpRoFU1WAWgWR0B6d+5rgwXZdX2UKGgGaAloD0MI7rJfd7oQcUCUhpRSlGgVTfgBaBZHQHp7zTOPeYV1fZQoaAZoCWgPQwgn3gGetFRwQJSGlFKUaBVNfAFoFkdAenwl6qsEJXV9lChoBmgJaA9DCJYFE3/UPHFAlIaUUpRoFU1KAWgWR0B6fb++/QBxdX2UKGgGaAloD0MIXI3sSktXcUCUhpRSlGgVTRoCaBZHQHqAcp1A7gd1fZQoaAZoCWgPQwhHPUSjO6VvQJSGlFKUaBVNwgFoFkdAeoCpcHGCI3V9lChoBmgJaA9DCM3MzMzMqm5AlIaUUpRoFU07AmgWR0B6gNGiHqNZdX2UKGgGaAloD0MIxLRv7m/1cECUhpRSlGgVTZQBaBZHQHqC4Hs1KoR1fZQoaAZoCWgPQwiHbvYHylRwQJSGlFKUaBVNagFoFkdAeoTc/+sHSnV9lChoBmgJaA9DCMSxLm4jh25AlIaUUpRoFU3cAWgWR0B6pc8W9DhMdX2UKGgGaAloD0MIfo/66xVRcECUhpRSlGgVTQcCaBZHQHqmP3ai9Ix1fZQoaAZoCWgPQwgiwyreSPlvQJSGlFKUaBVNPgJoFkdAeqbq7yxzJnV9lChoBmgJaA9DCMueBDbn+EpAlIaUUpRoFU0WAWgWR0B6qFQSBbwCdX2UKGgGaAloD0MILVvri4T2a0CUhpRSlGgVTccCaBZHQHqreg+Qlrx1fZQoaAZoCWgPQwi+S6lLRjVvQJSGlFKUaBVNIAFoFkdAeqwyj59E1HV9lChoBmgJaA9DCA4QzNGjX3BAlIaUUpRoFU2ZAWgWR0B6rEOFxn3+dX2UKGgGaAloD0MI6brwg/O7b0CUhpRSlGgVTT8BaBZHQHqtwL7XQMR1fZQoaAZoCWgPQwhcjexKy1xAQJSGlFKUaBVNEwFoFkdAeq5lhw2l23V9lChoBmgJaA9DCN2XM9uV3nFAlIaUUpRoFU0WAWgWR0B6rqOS4e90dX2UKGgGaAloD0MICAWlaOWZcUCUhpRSlGgVTWcBaBZHQHqw1gMMI/t1fZQoaAZoCWgPQwhwz/OnjahxQJSGlFKUaBVNGwJoFkdAerIEAo5PuXV9lChoBmgJaA9DCAwepn1z1W9AlIaUUpRoFU1IAWgWR0B6sq+23KB/dX2UKGgGaAloD0MIJSAm4UJpcUCUhpRSlGgVTVMBaBZHQHq6c14xDb91fZQoaAZoCWgPQwg0gSIW8aNwQJSGlFKUaBVNWgFoFkdAerqK5kK/mHV9lChoBmgJaA9DCHWw/s/hNm5AlIaUUpRoFU1ZAWgWR0B6u5gSeyzHdX2UKGgGaAloD0MIEW+df3sUcECUhpRSlGgVTbsBaBZHQHq77m6oVEd1fZQoaAZoCWgPQwguNxjqsM5vQJSGlFKUaBVN+AFoFkdAerwOsT37DXV9lChoBmgJaA9DCF99PPTd9m9AlIaUUpRoFU0/AWgWR0B6v0DdP+GXdX2UKGgGaAloD0MIuW5KeS0Lb0CUhpRSlGgVTUwBaBZHQHrDaXv6TGJ1fZQoaAZoCWgPQwjMuKmBZqdhQJSGlFKUaBVN6ANoFkdAesOoYekpJHV9lChoBmgJaA9DCL3hPnJrsGxAlIaUUpRoFU1dAWgWR0B6xF9H+ZPVdX2UKGgGaAloD0MIrIvbaIAtcUCUhpRSlGgVTSQBaBZHQHrGaY/mknF1fZQoaAZoCWgPQwhWC+wxEdBsQJSGlFKUaBVNhgFoFkdAesZuxrzoU3V9lChoBmgJaA9DCKp9Oh6zKnBAlIaUUpRoFU3fAWgWR0B6xqlJpWWAdX2UKGgGaAloD0MIxysQPakDa0CUhpRSlGgVTbIBaBZHQHrHUSIxgzB1fZQoaAZoCWgPQwgjLgCNUtdxQJSGlFKUaBVNZgFoFkdAesgD4gzP8nV9lChoBmgJaA9DCPNxbaiYFHBAlIaUUpRoFU2VAWgWR0B6y4Xm/336dX2UKGgGaAloD0MIhnMNM3R7ckCUhpRSlGgVTT0BaBZHQHrPJGBnSOR1fZQoaAZoCWgPQwhjey3oPUlvQJSGlFKUaBVNWgJoFkdAes+4pMHryHV9lChoBmgJaA9DCK63zVRI3nFAlIaUUpRoFU1aAWgWR0B6z/L1VYITdX2UKGgGaAloD0MIduPdkbFuRkCUhpRSlGgVS/hoFkdAetG30wrUb3V9lChoBmgJaA9DCJPH0/KD/HFAlIaUUpRoFU2vAWgWR0B61S7cwg1WdX2UKGgGaAloD0MIhVypZ0FXcECUhpRSlGgVTaQBaBZHQHrWAJb+tKZ1fZQoaAZoCWgPQwh1WrdB7UdyQJSGlFKUaBVNHQFoFkdAetfElE7W/nV9lChoBmgJaA9DCIOj5NV5VXBAlIaUUpRoFU3HAWgWR0B62CsJY1YRdX2UKGgGaAloD0MIo5Ol1nuoakCUhpRSlGgVTWQBaBZHQHrd3UDuBtl1fZQoaAZoCWgPQwjRlJ1+UG1wQJSGlFKUaBVNlAFoFkdAet9dvKlpGnV9lChoBmgJaA9DCMreUs4XHXJAlIaUUpRoFU3ZAWgWR0B64hELH+6zdX2UKGgGaAloD0MICRnIs8szTECUhpRSlGgVTR4BaBZHQHrimLUCq6x1ZS4="
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 248,
|
76 |
+
"n_steps": 1024,
|
77 |
+
"gamma": 0.999,
|
78 |
+
"gae_lambda": 0.98,
|
79 |
+
"ent_coef": 0.01,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 4,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWVnwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL3JheWVkL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c922eef4d23846ad252648e9590e3dcb202c1a02d342e346b274bb483a6a8e69
|
3 |
+
size 88057
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a85771daa171a66f15bf1bbdcc0cc83de71566591f7649817fa1007a0a79a79
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022
|
2 |
+
Python: 3.10.8
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.23.4
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.92 +/- 19.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f5f2525f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f5f252680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f5f252710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f5f2527a0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f5f252830>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f5f2528c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f5f252950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f5f2529e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f5f252a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f5f252b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f5f252b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5f603bcb00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672806257244823431, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL3JheWVkL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR3U6kHVKb0CUhpRSlIwBbJRNkQGMAXSUR0B5+p1HOKO1dX2UKGgGaAloD0MIlgfpKXJ+cECUhpRSlGgVTXMBaBZHQHn8wSFoL5R1fZQoaAZoCWgPQwhl4lZBDBdyQJSGlFKUaBVNRwFoFkdAegOo0ALiM3V9lChoBmgJaA9DCErP9BLjBnBAlIaUUpRoFU1lAWgWR0B6BTAqNIbwdX2UKGgGaAloD0MIa5kMx/PPb0CUhpRSlGgVTU0BaBZHQHoFsawUxmF1fZQoaAZoCWgPQwg6CDpalcZxQJSGlFKUaBVNRQFoFkdAegnPJq7AcnV9lChoBmgJaA9DCBwJNNiUoXFAlIaUUpRoFU3bAWgWR0B6Cfl5nlGPdX2UKGgGaAloD0MIp1t2iL9wcECUhpRSlGgVTYcBaBZHQHoOvaDf3vh1fZQoaAZoCWgPQwitFAK5RG1wQJSGlFKUaBVNBQJoFkdAeg8Q+UyHmHV9lChoBmgJaA9DCNKPhlPmKGxAlIaUUpRoFU0mAmgWR0B6DyZgG8mKdX2UKGgGaAloD0MIg7709iekcECUhpRSlGgVTakBaBZHQHoPR42S+xp1fZQoaAZoCWgPQwglrfiGgipwQJSGlFKUaBVNFwJoFkdAeg+LORkmQnV9lChoBmgJaA9DCE6XxcTmb3BAlIaUUpRoFU1oAWgWR0B6E6SxJNCadX2UKGgGaAloD0MIgZICC+BNbECUhpRSlGgVTaQBaBZHQHoT2u5jH4p1fZQoaAZoCWgPQwim1vuNdntwQJSGlFKUaBVNWgFoFkdAehTvWpZOi3V9lChoBmgJaA9DCL/v37w4JXFAlIaUUpRoFU0FAmgWR0B6FWZH/cWTdX2UKGgGaAloD0MIGedvQmEMcECUhpRSlGgVTWEBaBZHQHoXDqv/zat1fZQoaAZoCWgPQwgEq+rltw5xQJSGlFKUaBVNNwFoFkdAehl+nqFAV3V9lChoBmgJaA9DCG/YtigzgHBAlIaUUpRoFU1vAWgWR0B6HnCTEBKddX2UKGgGaAloD0MIr1+wG7adbkCUhpRSlGgVTWUDaBZHQHofSk43m3h1fZQoaAZoCWgPQwjikXh5OnZuQJSGlFKUaBVNXwFoFkdAeiGAVfu1GHV9lChoBmgJaA9DCKypLAp7zXFAlIaUUpRoFU14AWgWR0B6RTHMlkYodX2UKGgGaAloD0MIyaoINxldcECUhpRSlGgVTXcBaBZHQHpFtGus90R1fZQoaAZoCWgPQwgVViqoqKNvQJSGlFKUaBVNQgFoFkdAekdV0tAcDXV9lChoBmgJaA9DCLVug9ovs3JAlIaUUpRoFU2QAWgWR0B6SC54GD+SdX2UKGgGaAloD0MIIJxPHev9cECUhpRSlGgVTcoBaBZHQHpMOR9w3o91fZQoaAZoCWgPQwiwcJLmD+BwQJSGlFKUaBVNEAJoFkdAekyofCAMD3V9lChoBmgJaA9DCPPHtDYNPHJAlIaUUpRoFU2cAWgWR0B6T3GyX2M9dX2UKGgGaAloD0MICAYQPpQTbECUhpRSlGgVTW8CaBZHQHpPt+b3Gn51fZQoaAZoCWgPQwgMryR5Lm9tQJSGlFKUaBVNYgFoFkdAelD2zfJmunV9lChoBmgJaA9DCE8jLZW340dAlIaUUpRoFU0hAWgWR0B6UWcOLBKudX2UKGgGaAloD0MI9FMcB17bQkCUhpRSlGgVTRcBaBZHQHpRdlEqlP91fZQoaAZoCWgPQwi6TE2CN59wQJSGlFKUaBVN0gFoFkdAelGHTZxrBXV9lChoBmgJaA9DCG3+X3VkpnBAlIaUUpRoFU3dAWgWR0B6VWHP/rB1dX2UKGgGaAloD0MIQpPEknK7cECUhpRSlGgVTUACaBZHQHpaFcyFfzB1fZQoaAZoCWgPQwhGmKJcmqlpQJSGlFKUaBVNrAJoFkdAelqXaJyhjHV9lChoBmgJaA9DCHIW9rQD6XBAlIaUUpRoFU1IAWgWR0B6XAu9OARTdX2UKGgGaAloD0MI+5KNB9sAbECUhpRSlGgVTV0BaBZHQHpe5N47ihp1fZQoaAZoCWgPQwjrNqj9FqdwQJSGlFKUaBVNYAFoFkdAel/UHpr1unV9lChoBmgJaA9DCB6ILNKEnXJAlIaUUpRoFU3+AWgWR0B6Yn8fms/6dX2UKGgGaAloD0MIwlHy6pxNckCUhpRSlGgVTSkBaBZHQHpi7Yf4h2Z1fZQoaAZoCWgPQwhFhH8RtI9tQJSGlFKUaBVNYQFoFkdAemOdO6/Zd3V9lChoBmgJaA9DCC47xD9sgmtAlIaUUpRoFU3GAWgWR0B6ZHpIMBp6dX2UKGgGaAloD0MIblFmg4whcECUhpRSlGgVTYoBaBZHQHpmbdrO7g91fZQoaAZoCWgPQwhpjNZR1SVwQJSGlFKUaBVNTgFoFkdAemcfywwCbXV9lChoBmgJaA9DCPHwngNL+W5AlIaUUpRoFU1sAWgWR0B6Zzw8W9DhdX2UKGgGaAloD0MIb9V1qKaacUCUhpRSlGgVTWEBaBZHQHpnpl4C6pZ1fZQoaAZoCWgPQwiamZmZmSFtQJSGlFKUaBVNdAFoFkdAemjTGo73f3V9lChoBmgJaA9DCMfWM4QjQHJAlIaUUpRoFU2XAWgWR0B6am++M6zWdX2UKGgGaAloD0MI/+kGCryDbUCUhpRSlGgVTb4BaBZHQHpw6BRQ7911fZQoaAZoCWgPQwiGVidn6FNwQJSGlFKUaBVNRgFoFkdAenIsWweNk3V9lChoBmgJaA9DCLudfeXBJnBAlIaUUpRoFU1WAWgWR0B6d+5rgwXZdX2UKGgGaAloD0MI7rJfd7oQcUCUhpRSlGgVTfgBaBZHQHp7zTOPeYV1fZQoaAZoCWgPQwgn3gGetFRwQJSGlFKUaBVNfAFoFkdAenwl6qsEJXV9lChoBmgJaA9DCJYFE3/UPHFAlIaUUpRoFU1KAWgWR0B6fb++/QBxdX2UKGgGaAloD0MIXI3sSktXcUCUhpRSlGgVTRoCaBZHQHqAcp1A7gd1fZQoaAZoCWgPQwhHPUSjO6VvQJSGlFKUaBVNwgFoFkdAeoCpcHGCI3V9lChoBmgJaA9DCM3MzMzMqm5AlIaUUpRoFU07AmgWR0B6gNGiHqNZdX2UKGgGaAloD0MIxLRv7m/1cECUhpRSlGgVTZQBaBZHQHqC4Hs1KoR1fZQoaAZoCWgPQwiHbvYHylRwQJSGlFKUaBVNagFoFkdAeoTc/+sHSnV9lChoBmgJaA9DCMSxLm4jh25AlIaUUpRoFU3cAWgWR0B6pc8W9DhMdX2UKGgGaAloD0MIfo/66xVRcECUhpRSlGgVTQcCaBZHQHqmP3ai9Ix1fZQoaAZoCWgPQwgiwyreSPlvQJSGlFKUaBVNPgJoFkdAeqbq7yxzJnV9lChoBmgJaA9DCMueBDbn+EpAlIaUUpRoFU0WAWgWR0B6qFQSBbwCdX2UKGgGaAloD0MILVvri4T2a0CUhpRSlGgVTccCaBZHQHqreg+Qlrx1fZQoaAZoCWgPQwi+S6lLRjVvQJSGlFKUaBVNIAFoFkdAeqwyj59E1HV9lChoBmgJaA9DCA4QzNGjX3BAlIaUUpRoFU2ZAWgWR0B6rEOFxn3+dX2UKGgGaAloD0MI6brwg/O7b0CUhpRSlGgVTT8BaBZHQHqtwL7XQMR1fZQoaAZoCWgPQwhcjexKy1xAQJSGlFKUaBVNEwFoFkdAeq5lhw2l23V9lChoBmgJaA9DCN2XM9uV3nFAlIaUUpRoFU0WAWgWR0B6rqOS4e90dX2UKGgGaAloD0MICAWlaOWZcUCUhpRSlGgVTWcBaBZHQHqw1gMMI/t1fZQoaAZoCWgPQwhwz/OnjahxQJSGlFKUaBVNGwJoFkdAerIEAo5PuXV9lChoBmgJaA9DCAwepn1z1W9AlIaUUpRoFU1IAWgWR0B6sq+23KB/dX2UKGgGaAloD0MIJSAm4UJpcUCUhpRSlGgVTVMBaBZHQHq6c14xDb91fZQoaAZoCWgPQwg0gSIW8aNwQJSGlFKUaBVNWgFoFkdAerqK5kK/mHV9lChoBmgJaA9DCHWw/s/hNm5AlIaUUpRoFU1ZAWgWR0B6u5gSeyzHdX2UKGgGaAloD0MIEW+df3sUcECUhpRSlGgVTbsBaBZHQHq77m6oVEd1fZQoaAZoCWgPQwguNxjqsM5vQJSGlFKUaBVN+AFoFkdAerwOsT37DXV9lChoBmgJaA9DCF99PPTd9m9AlIaUUpRoFU0/AWgWR0B6v0DdP+GXdX2UKGgGaAloD0MIuW5KeS0Lb0CUhpRSlGgVTUwBaBZHQHrDaXv6TGJ1fZQoaAZoCWgPQwjMuKmBZqdhQJSGlFKUaBVN6ANoFkdAesOoYekpJHV9lChoBmgJaA9DCL3hPnJrsGxAlIaUUpRoFU1dAWgWR0B6xF9H+ZPVdX2UKGgGaAloD0MIrIvbaIAtcUCUhpRSlGgVTSQBaBZHQHrGaY/mknF1fZQoaAZoCWgPQwhWC+wxEdBsQJSGlFKUaBVNhgFoFkdAesZuxrzoU3V9lChoBmgJaA9DCKp9Oh6zKnBAlIaUUpRoFU3fAWgWR0B6xqlJpWWAdX2UKGgGaAloD0MIxysQPakDa0CUhpRSlGgVTbIBaBZHQHrHUSIxgzB1fZQoaAZoCWgPQwgjLgCNUtdxQJSGlFKUaBVNZgFoFkdAesgD4gzP8nV9lChoBmgJaA9DCPNxbaiYFHBAlIaUUpRoFU2VAWgWR0B6y4Xm/336dX2UKGgGaAloD0MIhnMNM3R7ckCUhpRSlGgVTT0BaBZHQHrPJGBnSOR1fZQoaAZoCWgPQwhjey3oPUlvQJSGlFKUaBVNWgJoFkdAes+4pMHryHV9lChoBmgJaA9DCK63zVRI3nFAlIaUUpRoFU1aAWgWR0B6z/L1VYITdX2UKGgGaAloD0MIduPdkbFuRkCUhpRSlGgVS/hoFkdAetG30wrUb3V9lChoBmgJaA9DCJPH0/KD/HFAlIaUUpRoFU2vAWgWR0B61S7cwg1WdX2UKGgGaAloD0MIhVypZ0FXcECUhpRSlGgVTaQBaBZHQHrWAJb+tKZ1fZQoaAZoCWgPQwh1WrdB7UdyQJSGlFKUaBVNHQFoFkdAetfElE7W/nV9lChoBmgJaA9DCIOj5NV5VXBAlIaUUpRoFU3HAWgWR0B62CsJY1YRdX2UKGgGaAloD0MIo5Ol1nuoakCUhpRSlGgVTWQBaBZHQHrd3UDuBtl1fZQoaAZoCWgPQwjRlJ1+UG1wQJSGlFKUaBVNlAFoFkdAet9dvKlpGnV9lChoBmgJaA9DCMreUs4XHXJAlIaUUpRoFU3ZAWgWR0B64hELH+6zdX2UKGgGaAloD0MICRnIs8szTECUhpRSlGgVTR4BaBZHQHrimLUCq6x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVnwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL3JheWVkL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.9184645202383, "std_reward": 19.31573334774499, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-04T14:12:03.520619"}
|