{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5f603bcb00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672806257244823431, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVnwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL3JheWVkL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR3U6kHVKb0CUhpRSlIwBbJRNkQGMAXSUR0B5+p1HOKO1dX2UKGgGaAloD0MIlgfpKXJ+cECUhpRSlGgVTXMBaBZHQHn8wSFoL5R1fZQoaAZoCWgPQwhl4lZBDBdyQJSGlFKUaBVNRwFoFkdAegOo0ALiM3V9lChoBmgJaA9DCErP9BLjBnBAlIaUUpRoFU1lAWgWR0B6BTAqNIbwdX2UKGgGaAloD0MIa5kMx/PPb0CUhpRSlGgVTU0BaBZHQHoFsawUxmF1fZQoaAZoCWgPQwg6CDpalcZxQJSGlFKUaBVNRQFoFkdAegnPJq7AcnV9lChoBmgJaA9DCBwJNNiUoXFAlIaUUpRoFU3bAWgWR0B6Cfl5nlGPdX2UKGgGaAloD0MIp1t2iL9wcECUhpRSlGgVTYcBaBZHQHoOvaDf3vh1fZQoaAZoCWgPQwitFAK5RG1wQJSGlFKUaBVNBQJoFkdAeg8Q+UyHmHV9lChoBmgJaA9DCNKPhlPmKGxAlIaUUpRoFU0mAmgWR0B6DyZgG8mKdX2UKGgGaAloD0MIg7709iekcECUhpRSlGgVTakBaBZHQHoPR42S+xp1fZQoaAZoCWgPQwglrfiGgipwQJSGlFKUaBVNFwJoFkdAeg+LORkmQnV9lChoBmgJaA9DCE6XxcTmb3BAlIaUUpRoFU1oAWgWR0B6E6SxJNCadX2UKGgGaAloD0MIgZICC+BNbECUhpRSlGgVTaQBaBZHQHoT2u5jH4p1fZQoaAZoCWgPQwim1vuNdntwQJSGlFKUaBVNWgFoFkdAehTvWpZOi3V9lChoBmgJaA9DCL/v37w4JXFAlIaUUpRoFU0FAmgWR0B6FWZH/cWTdX2UKGgGaAloD0MIGedvQmEMcECUhpRSlGgVTWEBaBZHQHoXDqv/zat1fZQoaAZoCWgPQwgEq+rltw5xQJSGlFKUaBVNNwFoFkdAehl+nqFAV3V9lChoBmgJaA9DCG/YtigzgHBAlIaUUpRoFU1vAWgWR0B6HnCTEBKddX2UKGgGaAloD0MIr1+wG7adbkCUhpRSlGgVTWUDaBZHQHofSk43m3h1fZQoaAZoCWgPQwjikXh5OnZuQJSGlFKUaBVNXwFoFkdAeiGAVfu1GHV9lChoBmgJaA9DCKypLAp7zXFAlIaUUpRoFU14AWgWR0B6RTHMlkYodX2UKGgGaAloD0MIyaoINxldcECUhpRSlGgVTXcBaBZHQHpFtGus90R1fZQoaAZoCWgPQwgVViqoqKNvQJSGlFKUaBVNQgFoFkdAekdV0tAcDXV9lChoBmgJaA9DCLVug9ovs3JAlIaUUpRoFU2QAWgWR0B6SC54GD+SdX2UKGgGaAloD0MIIJxPHev9cECUhpRSlGgVTcoBaBZHQHpMOR9w3o91fZQoaAZoCWgPQwiwcJLmD+BwQJSGlFKUaBVNEAJoFkdAekyofCAMD3V9lChoBmgJaA9DCPPHtDYNPHJAlIaUUpRoFU2cAWgWR0B6T3GyX2M9dX2UKGgGaAloD0MICAYQPpQTbECUhpRSlGgVTW8CaBZHQHpPt+b3Gn51fZQoaAZoCWgPQwgMryR5Lm9tQJSGlFKUaBVNYgFoFkdAelD2zfJmunV9lChoBmgJaA9DCE8jLZW340dAlIaUUpRoFU0hAWgWR0B6UWcOLBKudX2UKGgGaAloD0MI9FMcB17bQkCUhpRSlGgVTRcBaBZHQHpRdlEqlP91fZQoaAZoCWgPQwi6TE2CN59wQJSGlFKUaBVN0gFoFkdAelGHTZxrBXV9lChoBmgJaA9DCG3+X3VkpnBAlIaUUpRoFU3dAWgWR0B6VWHP/rB1dX2UKGgGaAloD0MIQpPEknK7cECUhpRSlGgVTUACaBZHQHpaFcyFfzB1fZQoaAZoCWgPQwhGmKJcmqlpQJSGlFKUaBVNrAJoFkdAelqXaJyhjHV9lChoBmgJaA9DCHIW9rQD6XBAlIaUUpRoFU1IAWgWR0B6XAu9OARTdX2UKGgGaAloD0MI+5KNB9sAbECUhpRSlGgVTV0BaBZHQHpe5N47ihp1fZQoaAZoCWgPQwjrNqj9FqdwQJSGlFKUaBVNYAFoFkdAel/UHpr1unV9lChoBmgJaA9DCB6ILNKEnXJAlIaUUpRoFU3+AWgWR0B6Yn8fms/6dX2UKGgGaAloD0MIwlHy6pxNckCUhpRSlGgVTSkBaBZHQHpi7Yf4h2Z1fZQoaAZoCWgPQwhFhH8RtI9tQJSGlFKUaBVNYQFoFkdAemOdO6/Zd3V9lChoBmgJaA9DCC47xD9sgmtAlIaUUpRoFU3GAWgWR0B6ZHpIMBp6dX2UKGgGaAloD0MIblFmg4whcECUhpRSlGgVTYoBaBZHQHpmbdrO7g91fZQoaAZoCWgPQwhpjNZR1SVwQJSGlFKUaBVNTgFoFkdAemcfywwCbXV9lChoBmgJaA9DCPHwngNL+W5AlIaUUpRoFU1sAWgWR0B6Zzw8W9DhdX2UKGgGaAloD0MIb9V1qKaacUCUhpRSlGgVTWEBaBZHQHpnpl4C6pZ1fZQoaAZoCWgPQwiamZmZmSFtQJSGlFKUaBVNdAFoFkdAemjTGo73f3V9lChoBmgJaA9DCMfWM4QjQHJAlIaUUpRoFU2XAWgWR0B6am++M6zWdX2UKGgGaAloD0MI/+kGCryDbUCUhpRSlGgVTb4BaBZHQHpw6BRQ7911fZQoaAZoCWgPQwiGVidn6FNwQJSGlFKUaBVNRgFoFkdAenIsWweNk3V9lChoBmgJaA9DCLudfeXBJnBAlIaUUpRoFU1WAWgWR0B6d+5rgwXZdX2UKGgGaAloD0MI7rJfd7oQcUCUhpRSlGgVTfgBaBZHQHp7zTOPeYV1fZQoaAZoCWgPQwgn3gGetFRwQJSGlFKUaBVNfAFoFkdAenwl6qsEJXV9lChoBmgJaA9DCJYFE3/UPHFAlIaUUpRoFU1KAWgWR0B6fb++/QBxdX2UKGgGaAloD0MIXI3sSktXcUCUhpRSlGgVTRoCaBZHQHqAcp1A7gd1fZQoaAZoCWgPQwhHPUSjO6VvQJSGlFKUaBVNwgFoFkdAeoCpcHGCI3V9lChoBmgJaA9DCM3MzMzMqm5AlIaUUpRoFU07AmgWR0B6gNGiHqNZdX2UKGgGaAloD0MIxLRv7m/1cECUhpRSlGgVTZQBaBZHQHqC4Hs1KoR1fZQoaAZoCWgPQwiHbvYHylRwQJSGlFKUaBVNagFoFkdAeoTc/+sHSnV9lChoBmgJaA9DCMSxLm4jh25AlIaUUpRoFU3cAWgWR0B6pc8W9DhMdX2UKGgGaAloD0MIfo/66xVRcECUhpRSlGgVTQcCaBZHQHqmP3ai9Ix1fZQoaAZoCWgPQwgiwyreSPlvQJSGlFKUaBVNPgJoFkdAeqbq7yxzJnV9lChoBmgJaA9DCMueBDbn+EpAlIaUUpRoFU0WAWgWR0B6qFQSBbwCdX2UKGgGaAloD0MILVvri4T2a0CUhpRSlGgVTccCaBZHQHqreg+Qlrx1fZQoaAZoCWgPQwi+S6lLRjVvQJSGlFKUaBVNIAFoFkdAeqwyj59E1HV9lChoBmgJaA9DCA4QzNGjX3BAlIaUUpRoFU2ZAWgWR0B6rEOFxn3+dX2UKGgGaAloD0MI6brwg/O7b0CUhpRSlGgVTT8BaBZHQHqtwL7XQMR1fZQoaAZoCWgPQwhcjexKy1xAQJSGlFKUaBVNEwFoFkdAeq5lhw2l23V9lChoBmgJaA9DCN2XM9uV3nFAlIaUUpRoFU0WAWgWR0B6rqOS4e90dX2UKGgGaAloD0MICAWlaOWZcUCUhpRSlGgVTWcBaBZHQHqw1gMMI/t1fZQoaAZoCWgPQwhwz/OnjahxQJSGlFKUaBVNGwJoFkdAerIEAo5PuXV9lChoBmgJaA9DCAwepn1z1W9AlIaUUpRoFU1IAWgWR0B6sq+23KB/dX2UKGgGaAloD0MIJSAm4UJpcUCUhpRSlGgVTVMBaBZHQHq6c14xDb91fZQoaAZoCWgPQwg0gSIW8aNwQJSGlFKUaBVNWgFoFkdAerqK5kK/mHV9lChoBmgJaA9DCHWw/s/hNm5AlIaUUpRoFU1ZAWgWR0B6u5gSeyzHdX2UKGgGaAloD0MIEW+df3sUcECUhpRSlGgVTbsBaBZHQHq77m6oVEd1fZQoaAZoCWgPQwguNxjqsM5vQJSGlFKUaBVN+AFoFkdAerwOsT37DXV9lChoBmgJaA9DCF99PPTd9m9AlIaUUpRoFU0/AWgWR0B6v0DdP+GXdX2UKGgGaAloD0MIuW5KeS0Lb0CUhpRSlGgVTUwBaBZHQHrDaXv6TGJ1fZQoaAZoCWgPQwjMuKmBZqdhQJSGlFKUaBVN6ANoFkdAesOoYekpJHV9lChoBmgJaA9DCL3hPnJrsGxAlIaUUpRoFU1dAWgWR0B6xF9H+ZPVdX2UKGgGaAloD0MIrIvbaIAtcUCUhpRSlGgVTSQBaBZHQHrGaY/mknF1fZQoaAZoCWgPQwhWC+wxEdBsQJSGlFKUaBVNhgFoFkdAesZuxrzoU3V9lChoBmgJaA9DCKp9Oh6zKnBAlIaUUpRoFU3fAWgWR0B6xqlJpWWAdX2UKGgGaAloD0MIxysQPakDa0CUhpRSlGgVTbIBaBZHQHrHUSIxgzB1fZQoaAZoCWgPQwgjLgCNUtdxQJSGlFKUaBVNZgFoFkdAesgD4gzP8nV9lChoBmgJaA9DCPNxbaiYFHBAlIaUUpRoFU2VAWgWR0B6y4Xm/336dX2UKGgGaAloD0MIhnMNM3R7ckCUhpRSlGgVTT0BaBZHQHrPJGBnSOR1fZQoaAZoCWgPQwhjey3oPUlvQJSGlFKUaBVNWgJoFkdAes+4pMHryHV9lChoBmgJaA9DCK63zVRI3nFAlIaUUpRoFU1aAWgWR0B6z/L1VYITdX2UKGgGaAloD0MIduPdkbFuRkCUhpRSlGgVS/hoFkdAetG30wrUb3V9lChoBmgJaA9DCJPH0/KD/HFAlIaUUpRoFU2vAWgWR0B61S7cwg1WdX2UKGgGaAloD0MIhVypZ0FXcECUhpRSlGgVTaQBaBZHQHrWAJb+tKZ1fZQoaAZoCWgPQwh1WrdB7UdyQJSGlFKUaBVNHQFoFkdAetfElE7W/nV9lChoBmgJaA9DCIOj5NV5VXBAlIaUUpRoFU3HAWgWR0B62CsJY1YRdX2UKGgGaAloD0MIo5Ol1nuoakCUhpRSlGgVTWQBaBZHQHrd3UDuBtl1fZQoaAZoCWgPQwjRlJ1+UG1wQJSGlFKUaBVNlAFoFkdAet9dvKlpGnV9lChoBmgJaA9DCMreUs4XHXJAlIaUUpRoFU3ZAWgWR0B64hELH+6zdX2UKGgGaAloD0MICRnIs8szTECUhpRSlGgVTR4BaBZHQHrimLUCq6x1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVnwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbS9ob21lL3JheWVkL2FuYWNvbmRhMy9lbnZzL2RlZXBfcmxfY2xhc3NfdW5pdDEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}