--- library_name: transformers license: apache-2.0 base_model: razhan/whisper-base-hawrami tags: - generated_from_trainer datasets: - razhan/DOLMA-speech metrics: - wer model-index: - name: whisper-base-hawrami-transcription results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: razhan/DOLMA-speech hawrami type: razhan/DOLMA-speech args: hawrami metrics: - name: Wer type: wer value: 0.40128824476650565 --- # whisper-base-hawrami-transcription This model is a fine-tuned version of [razhan/whisper-base-hawrami](https://huggingface.co/razhan/whisper-base-hawrami) on the razhan/DOLMA-speech hawrami dataset. It achieves the following results on the evaluation set: - Loss: 0.2612 - Wer: 0.4013 - Cer: 0.0856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6798 | 1.0 | 80 | 0.5513 | 0.6855 | 0.1788 | | 0.3095 | 2.0 | 160 | 0.2984 | 0.4486 | 0.0972 | | 0.2673 | 3.0 | 240 | 0.2676 | 0.4143 | 0.0882 | | 0.2428 | 4.0 | 320 | 0.2612 | 0.4013 | 0.0856 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0