model update
Browse files- README.md +36 -36
- analogy.bidirection.json +1 -1
- analogy.forward.json +1 -1
- analogy.reverse.json +1 -1
- classification.json +1 -1
- config.json +1 -1
- finetuning_config.json +1 -1
- pytorch_model.bin +2 -2
- relation_mapping.json +0 -0
- tokenizer.json +4 -2
README.md
CHANGED
@@ -14,7 +14,7 @@ model-index:
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
-
value: 0.
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
@@ -36,7 +36,7 @@ model-index:
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
-
value: 0.
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
@@ -47,7 +47,7 @@ model-index:
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
-
value: 0.
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
@@ -58,7 +58,7 @@ model-index:
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
-
value: 0.
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
@@ -69,7 +69,7 @@ model-index:
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
-
value: 0.
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
@@ -80,7 +80,7 @@ model-index:
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
-
value: 0.
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
@@ -91,7 +91,7 @@ model-index:
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
-
value: 0.
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
@@ -102,7 +102,7 @@ model-index:
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
-
value: 0.
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
@@ -113,7 +113,7 @@ model-index:
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
-
value: 0.
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
@@ -124,10 +124,10 @@ model-index:
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
-
value: 0.
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
-
value: 0.
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
@@ -138,10 +138,10 @@ model-index:
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
-
value: 0.
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
-
value: 0.
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
@@ -152,10 +152,10 @@ model-index:
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
-
value: 0.
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
-
value: 0.
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
@@ -166,10 +166,10 @@ model-index:
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
-
value: 0.
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
-
value: 0.
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
@@ -180,10 +180,10 @@ model-index:
|
|
180 |
metrics:
|
181 |
- name: F1
|
182 |
type: f1
|
183 |
-
value: 0.
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
-
value: 0.
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-base-nce-t-rex
|
@@ -191,23 +191,23 @@ model-index:
|
|
191 |
RelBERT based on [roberta-base](https://huggingface.co/roberta-base) fine-tuned on [relbert/t_rex_relational_similarity](https://huggingface.co/datasets/relbert/t_rex_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-t-rex/raw/main/analogy.forward.json)):
|
194 |
-
- Accuracy on SAT (full): 0.
|
195 |
-
- Accuracy on SAT: 0.
|
196 |
-
- Accuracy on BATS: 0.
|
197 |
-
- Accuracy on U2: 0.
|
198 |
-
- Accuracy on U4: 0.
|
199 |
-
- Accuracy on Google: 0.
|
200 |
-
- Accuracy on ConceptNet Analogy: 0.
|
201 |
-
- Accuracy on T-Rex Analogy: 0.
|
202 |
-
- Accuracy on NELL-ONE Analogy: 0.
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-t-rex/raw/main/classification.json)):
|
204 |
-
- Micro F1 score on BLESS: 0.
|
205 |
-
- Micro F1 score on CogALexV: 0.
|
206 |
-
- Micro F1 score on EVALution: 0.
|
207 |
-
- Micro F1 score on K&H+N: 0.
|
208 |
-
- Micro F1 score on ROOT09: 0.
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-t-rex/raw/main/relation_mapping.json)):
|
210 |
-
- Accuracy on Relation Mapping: 0.
|
211 |
|
212 |
|
213 |
### Usage
|
@@ -249,7 +249,7 @@ If you use any resource from RelBERT, please consider to cite our [paper](https:
|
|
249 |
|
250 |
```
|
251 |
|
252 |
-
@inproceedings{ushio-etal-
|
253 |
title = "Distilling Relation Embeddings from Pretrained Language Models",
|
254 |
author = "Ushio, Asahi and
|
255 |
Camacho-Collados, Jose and
|
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
+
value: 0.8037103174603175
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.4679144385026738
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.4836795252225519
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
+
value: 0.5102834908282379
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
+
value: 0.75
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
+
value: 0.42543859649122806
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
+
value: 0.4398148148148148
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
+
value: 0.18791946308724833
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
+
value: 0.8360655737704918
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
+
value: 0.7216666666666667
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
+
value: 0.893174627090553
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
+
value: 0.8930103376872522
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
+
value: 0.828169014084507
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
+
value: 0.635622257984698
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
+
value: 0.6473456121343445
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
+
value: 0.6272978919061384
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
+
value: 0.9520762328719482
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
+
value: 0.8665439837723805
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
|
|
180 |
metrics:
|
181 |
- name: F1
|
182 |
type: f1
|
183 |
+
value: 0.8824819805703541
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
+
value: 0.8753300511142968
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-base-nce-t-rex
|
|
|
191 |
RelBERT based on [roberta-base](https://huggingface.co/roberta-base) fine-tuned on [relbert/t_rex_relational_similarity](https://huggingface.co/datasets/relbert/t_rex_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-t-rex/raw/main/analogy.forward.json)):
|
194 |
+
- Accuracy on SAT (full): 0.4679144385026738
|
195 |
+
- Accuracy on SAT: 0.4836795252225519
|
196 |
+
- Accuracy on BATS: 0.5102834908282379
|
197 |
+
- Accuracy on U2: 0.42543859649122806
|
198 |
+
- Accuracy on U4: 0.4398148148148148
|
199 |
+
- Accuracy on Google: 0.75
|
200 |
+
- Accuracy on ConceptNet Analogy: 0.18791946308724833
|
201 |
+
- Accuracy on T-Rex Analogy: 0.8360655737704918
|
202 |
+
- Accuracy on NELL-ONE Analogy: 0.7216666666666667
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-t-rex/raw/main/classification.json)):
|
204 |
+
- Micro F1 score on BLESS: 0.893174627090553
|
205 |
+
- Micro F1 score on CogALexV: 0.828169014084507
|
206 |
+
- Micro F1 score on EVALution: 0.6473456121343445
|
207 |
+
- Micro F1 score on K&H+N: 0.9520762328719482
|
208 |
+
- Micro F1 score on ROOT09: 0.8824819805703541
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-t-rex/raw/main/relation_mapping.json)):
|
210 |
+
- Accuracy on Relation Mapping: 0.8037103174603175
|
211 |
|
212 |
|
213 |
### Usage
|
|
|
249 |
|
250 |
```
|
251 |
|
252 |
+
@inproceedings{ushio-etal-2021-distilling,
|
253 |
title = "Distilling Relation Embeddings from Pretrained Language Models",
|
254 |
author = "Ushio, Asahi and
|
255 |
Camacho-Collados, Jose and
|
analogy.bidirection.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"scan/test": 0.
|
|
|
1 |
+
{"scan/test": 0.21349009900990099, "sat_full/test": 0.47058823529411764, "sat/test": 0.49258160237388726, "u2/test": 0.45614035087719296, "u4/test": 0.4722222222222222, "google/test": 0.762, "bats/test": 0.5102834908282379, "t_rex_relational_similarity/test": 0.907103825136612, "conceptnet_relational_similarity/test": 0.1912751677852349, "nell_relational_similarity/test": 0.7516666666666667, "scan/validation": 0.20786516853932585, "sat/validation": 0.2702702702702703, "u2/validation": 0.5, "u4/validation": 0.4583333333333333, "google/validation": 0.76, "bats/validation": 0.5829145728643216, "semeval2012_relational_similarity/validation": 0.5822784810126582, "t_rex_relational_similarity/validation": 0.3689516129032258, "conceptnet_relational_similarity/validation": 0.1303956834532374, "nell_relational_similarity/validation": 0.6275}
|
analogy.forward.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"t_rex_relational_similarity/validation": 0.
|
|
|
1 |
+
{"t_rex_relational_similarity/validation": 0.3588709677419355, "scan/test": 0.19616336633663367, "sat_full/test": 0.4679144385026738, "sat/test": 0.4836795252225519, "u2/test": 0.42543859649122806, "u4/test": 0.4398148148148148, "google/test": 0.75, "bats/test": 0.5102834908282379, "t_rex_relational_similarity/test": 0.8360655737704918, "conceptnet_relational_similarity/test": 0.18791946308724833, "nell_relational_similarity/test": 0.7216666666666667, "scan/validation": 0.1853932584269663, "sat/validation": 0.32432432432432434, "u2/validation": 0.5, "u4/validation": 0.4583333333333333, "google/validation": 0.76, "bats/validation": 0.5979899497487438, "semeval2012_relational_similarity/validation": 0.5443037974683544, "conceptnet_relational_similarity/validation": 0.1447841726618705, "nell_relational_similarity/validation": 0.6075}
|
analogy.reverse.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"scan/test": 0.
|
|
|
1 |
+
{"scan/test": 0.18935643564356436, "sat_full/test": 0.45187165775401067, "sat/test": 0.4807121661721068, "u2/test": 0.4692982456140351, "u4/test": 0.49074074074074076, "google/test": 0.734, "bats/test": 0.47915508615897723, "t_rex_relational_similarity/test": 0.8579234972677595, "conceptnet_relational_similarity/test": 0.16526845637583892, "nell_relational_similarity/test": 0.7316666666666667, "scan/validation": 0.17415730337078653, "sat/validation": 0.1891891891891892, "u2/validation": 0.4166666666666667, "u4/validation": 0.4583333333333333, "google/validation": 0.72, "bats/validation": 0.5326633165829145, "semeval2012_relational_similarity/validation": 0.5822784810126582, "t_rex_relational_similarity/validation": 0.3125, "conceptnet_relational_similarity/validation": 0.10971223021582734, "nell_relational_similarity/validation": 0.6125}
|
classification.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.
|
|
|
1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.893174627090553, "test/f1_macro": 0.8930103376872522, "test/f1_micro": 0.893174627090553, "test/p_macro": 0.8769667616715443, "test/p_micro": 0.893174627090553, "test/r_macro": 0.9134767381633374, "test/r_micro": 0.893174627090553, "test/f1/attri": 0.9094736842105263, "test/p/attri": 0.8888888888888888, "test/r/attri": 0.9310344827586207, "test/f1/coord": 0.9519071310116086, "test/p/coord": 0.9288025889967637, "test/r/coord": 0.9761904761904762, "test/f1/event": 0.8120740019474197, "test/p/event": 0.7588717015468608, "test/r/event": 0.8732984293193717, "test/f1/hyper": 0.932761087267525, "test/p/hyper": 0.9340974212034384, "test/r/hyper": 0.9314285714285714, "test/f1/mero": 0.8426270136307311, "test/p/mero": 0.783410138248848, "test/r/mero": 0.9115281501340483, "test/f1/random": 0.9092191080557024, "test/p/random": 0.9677298311444653, "test/r/random": 0.8573803191489362}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.828169014084507, "test/f1_macro": 0.635622257984698, "test/f1_micro": 0.828169014084507, "test/p_macro": 0.6533963907120769, "test/p_micro": 0.828169014084507, "test/r_macro": 0.6223812518853498, "test/r_micro": 0.828169014084507, "test/f1/ANT": 0.6611570247933883, "test/p/ANT": 0.6557377049180327, "test/r/ANT": 0.6666666666666666, "test/f1/HYPER": 0.5735512630014858, "test/p/HYPER": 0.6632302405498282, "test/r/HYPER": 0.5052356020942408, "test/f1/PART_OF": 0.6227272727272727, "test/p/PART_OF": 0.6342592592592593, "test/r/PART_OF": 0.6116071428571429, "test/f1/RANDOM": 0.9215434083601286, "test/p/RANDOM": 0.9066751028155647, "test/r/RANDOM": 0.9369074861065708, "test/f1/SYN": 0.3991323210412147, "test/p/SYN": 0.40707964601769914, "test/r/SYN": 0.39148936170212767}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6473456121343445, "test/f1_macro": 0.6272978919061384, "test/f1_micro": 0.6473456121343445, "test/p_macro": 0.6379993388182703, "test/p_micro": 0.6473456121343445, "test/r_macro": 0.6283944073527691, "test/r_micro": 0.6473456121343445, "test/f1/Antonym": 0.745049504950495, "test/p/Antonym": 0.7659033078880407, "test/r/Antonym": 0.7253012048192771, "test/f1/HasA": 0.6987179487179488, "test/p/HasA": 0.6411764705882353, "test/r/HasA": 0.7676056338028169, "test/f1/HasProperty": 0.8115501519756838, "test/p/HasProperty": 0.7946428571428571, "test/r/HasProperty": 0.8291925465838509, "test/f1/IsA": 0.6021505376344087, "test/p/IsA": 0.5460992907801419, "test/r/IsA": 0.6710239651416122, "test/f1/MadeOf": 0.543046357615894, "test/p/MadeOf": 0.6307692307692307, "test/r/MadeOf": 0.47674418604651164, "test/f1/PartOf": 0.671280276816609, "test/p/PartOf": 0.6736111111111112, "test/r/PartOf": 0.6689655172413793, "test/f1/Synonym": 0.31929046563192903, "test/p/Synonym": 0.41379310344827586, "test/r/Synonym": 0.259927797833935}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9520762328719482, "test/f1_macro": 0.8665439837723805, "test/f1_micro": 0.9520762328719482, "test/p_macro": 0.883226419598165, "test/p_micro": 0.9520762328719482, "test/r_macro": 0.8522903227547688, "test/r_micro": 0.9520762328719482, "test/f1/false": 0.9600705934259873, "test/p/false": 0.9525755143732672, "test/r/false": 0.967684553809665, "test/f1/hypo": 0.9270428015564203, "test/p/hypo": 0.9398422090729783, "test/r/hypo": 0.9145873320537428, "test/f1/mero": 0.6199095022624435, "test/p/mero": 0.6782178217821783, "test/r/mero": 0.5708333333333333, "test/f1/sibl": 0.9591530378446709, "test/p/sibl": 0.9622701331642359, "test/r/sibl": 0.9560560718223342}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8824819805703541, "test/f1_macro": 0.8753300511142968, "test/f1_micro": 0.8824819805703541, "test/p_macro": 0.8890447043219271, "test/p_micro": 0.8824819805703541, "test/r_macro": 0.867841782002778, "test/r_micro": 0.8824819805703541, "test/f1/COORD": 0.9745145631067961, "test/p/COORD": 0.9651442307692307, "test/r/COORD": 0.9840686274509803, "test/f1/HYPER": 0.7605442176870748, "test/p/HYPER": 0.8456883509833586, "test/r/HYPER": 0.6909765142150803, "test/f1/RANDOM": 0.8909313725490197, "test/p/RANDOM": 0.856301531213192, "test/r/RANDOM": 0.9284802043422733}}
|
config.json
CHANGED
@@ -21,7 +21,7 @@
|
|
21 |
"position_embedding_type": "absolute",
|
22 |
"relbert_config": {
|
23 |
"aggregation_mode": "average_no_mask",
|
24 |
-
"template": "I
|
25 |
},
|
26 |
"torch_dtype": "float32",
|
27 |
"transformers_version": "4.26.1",
|
|
|
21 |
"position_embedding_type": "absolute",
|
22 |
"relbert_config": {
|
23 |
"aggregation_mode": "average_no_mask",
|
24 |
+
"template": "Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>"
|
25 |
},
|
26 |
"torch_dtype": "float32",
|
27 |
"transformers_version": "4.26.1",
|
finetuning_config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"template": "I
|
3 |
"model": "roberta-base",
|
4 |
"max_length": 64,
|
5 |
"epoch": 5,
|
|
|
1 |
{
|
2 |
+
"template": "Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj>",
|
3 |
"model": "roberta-base",
|
4 |
"max_length": 64,
|
5 |
"epoch": 5,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36e5182ebc888d5e917f1ef86fc498b0177733c088e40a417399edb87ab24e3f
|
3 |
+
size 498653741
|
relation_mapping.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
CHANGED
@@ -53,7 +53,8 @@
|
|
53 |
"pre_tokenizer": {
|
54 |
"type": "ByteLevel",
|
55 |
"add_prefix_space": false,
|
56 |
-
"trim_offsets": true
|
|
|
57 |
},
|
58 |
"post_processor": {
|
59 |
"type": "RobertaProcessing",
|
@@ -71,7 +72,8 @@
|
|
71 |
"decoder": {
|
72 |
"type": "ByteLevel",
|
73 |
"add_prefix_space": true,
|
74 |
-
"trim_offsets": true
|
|
|
75 |
},
|
76 |
"model": {
|
77 |
"type": "BPE",
|
|
|
53 |
"pre_tokenizer": {
|
54 |
"type": "ByteLevel",
|
55 |
"add_prefix_space": false,
|
56 |
+
"trim_offsets": true,
|
57 |
+
"use_regex": true
|
58 |
},
|
59 |
"post_processor": {
|
60 |
"type": "RobertaProcessing",
|
|
|
72 |
"decoder": {
|
73 |
"type": "ByteLevel",
|
74 |
"add_prefix_space": true,
|
75 |
+
"trim_offsets": true,
|
76 |
+
"use_regex": true
|
77 |
},
|
78 |
"model": {
|
79 |
"type": "BPE",
|