|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""RetrievaBERT model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class RetrievaBertConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`RetrievaBertModel`]. It is used to instantiate a |
|
RETRIEVA_BERT model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the RETRIEVA_BERT |
|
[nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 29056): |
|
Vocabulary size of the RETRIEVA_BERT model. Defines the number of different tokens that can be represented |
|
by the `inputs_ids` passed when calling [`RetrievaBertModel`]. |
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling [`RetrievaBertModel`]. |
|
If set 0, `token_type_ids` is not used. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): |
|
Type of position embedding. Choose one of `"absolute"`, `"rope"`. For |
|
positional embeddings use `"absolute"`. |
|
is_decoder (`bool`, *optional*, defaults to `False`): |
|
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from models import RetrievaBertConfig, RetrievaBertModel |
|
|
|
>>> # Initializing a RETRIEVA_BERT google-bert/bert-base-uncased style configuration |
|
>>> configuration = RetrievaBertConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration |
|
>>> model = RetrievaBertModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "retrieva-bert" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=29056, |
|
hidden_size=1024, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
intermediate_size=4096, |
|
hidden_act="silu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=0, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
rope_theta=10000.0, |
|
rotary_percent=1.0, |
|
mlp_bias=False, |
|
num_key_value_heads=None, |
|
lm_head_hidden_act="gelu", |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rotary_percent = rotary_percent |
|
self.mlp_bias = mlp_bias |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.lm_head_hidden_act = lm_head_hidden_act |
|
|