# coding=utf-8 # Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RetrievaBERT model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class RetrievaBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RetrievaBertModel`]. It is used to instantiate a RETRIEVA_BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RETRIEVA_BERT [nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 29056): Vocabulary size of the RETRIEVA_BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RetrievaBertModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RetrievaBertModel`]. If set 0, `token_type_ids` is not used. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"rope"`. For positional embeddings use `"absolute"`. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Examples: ```python >>> from models import RetrievaBertConfig, RetrievaBertModel >>> # Initializing a RETRIEVA_BERT google-bert/bert-base-uncased style configuration >>> configuration = RetrievaBertConfig() >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration >>> model = RetrievaBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "retrieva-bert" def __init__( self, vocab_size=29056, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="silu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=0, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, rope_theta=10000.0, rotary_percent=1.0, mlp_bias=False, num_key_value_heads=None, lm_head_hidden_act="gelu", **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.rope_theta = rope_theta self.rotary_percent = rotary_percent self.mlp_bias = mlp_bias if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.lm_head_hidden_act = lm_head_hidden_act