End of training
Browse files- README.md +33 -47
- all_results.json +5 -16
- train_results.json +5 -5
- trainer_state.json +189 -399
README.md
CHANGED
@@ -20,8 +20,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mbe dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -49,56 +49,42 @@ The following hyperparameters were used during training:
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: constant
|
51 |
- lr_scheduler_warmup_ratio: 0.03
|
52 |
-
-
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
58 |
-
| 1.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.586 | 0.4 | 60 | 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.2304 | 2.07 | 310 | 0.8200 | 0.5362 |
|
89 |
-
| 0.1696 | 2.14 | 320 | 0.9087 | 0.5296 |
|
90 |
-
| 0.2255 | 2.2 | 330 | 0.7566 | 0.5362 |
|
91 |
-
| 0.1923 | 2.27 | 340 | 0.7020 | 0.5197 |
|
92 |
-
| 0.281 | 2.34 | 350 | 0.6653 | 0.5033 |
|
93 |
-
| 0.2311 | 2.4 | 360 | 0.6412 | 0.5132 |
|
94 |
-
| 0.1523 | 2.47 | 370 | 0.8846 | 0.5230 |
|
95 |
-
| 0.2451 | 2.54 | 380 | 0.9252 | 0.5164 |
|
96 |
-
| 0.2022 | 2.6 | 390 | 0.7422 | 0.5197 |
|
97 |
-
| 0.217 | 2.67 | 400 | 0.7558 | 0.5329 |
|
98 |
-
| 0.165 | 2.74 | 410 | 0.7846 | 0.5428 |
|
99 |
-
| 0.2025 | 2.8 | 420 | 0.7254 | 0.5230 |
|
100 |
-
| 0.2201 | 2.87 | 430 | 0.6531 | 0.5296 |
|
101 |
-
| 0.2037 | 2.94 | 440 | 0.7827 | 0.5493 |
|
102 |
|
103 |
|
104 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mbe dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.5616
|
24 |
+
- Accuracy: 0.5362
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: constant
|
51 |
- lr_scheduler_warmup_ratio: 0.03
|
52 |
+
- training_steps: 300
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
58 |
+
| 1.5245 | 0.07 | 10 | 0.6507 | 0.3355 |
|
59 |
+
| 0.6666 | 0.13 | 20 | 0.6464 | 0.3816 |
|
60 |
+
| 0.6527 | 0.2 | 30 | 0.6427 | 0.3684 |
|
61 |
+
| 0.6168 | 0.27 | 40 | 0.6321 | 0.3980 |
|
62 |
+
| 0.6584 | 0.33 | 50 | 0.6182 | 0.3914 |
|
63 |
+
| 0.586 | 0.4 | 60 | 0.6244 | 0.4145 |
|
64 |
+
| 0.5924 | 0.47 | 70 | 0.6034 | 0.4342 |
|
65 |
+
| 0.6069 | 0.53 | 80 | 0.6096 | 0.4375 |
|
66 |
+
| 0.5999 | 0.6 | 90 | 0.6096 | 0.4408 |
|
67 |
+
| 0.6206 | 0.67 | 100 | 0.6070 | 0.4572 |
|
68 |
+
| 0.5793 | 0.73 | 110 | 0.6016 | 0.4572 |
|
69 |
+
| 0.6208 | 0.8 | 120 | 0.5902 | 0.4605 |
|
70 |
+
| 0.5622 | 0.87 | 130 | 0.5775 | 0.4770 |
|
71 |
+
| 0.5502 | 0.93 | 140 | 0.5761 | 0.4671 |
|
72 |
+
| 0.5958 | 1.0 | 150 | 0.5606 | 0.4901 |
|
73 |
+
| 0.4558 | 1.07 | 160 | 0.5840 | 0.4737 |
|
74 |
+
| 0.4411 | 1.14 | 170 | 0.5631 | 0.4901 |
|
75 |
+
| 0.4144 | 1.2 | 180 | 0.5745 | 0.5 |
|
76 |
+
| 0.4647 | 1.27 | 190 | 0.5932 | 0.4605 |
|
77 |
+
| 0.4504 | 1.34 | 200 | 0.5799 | 0.5099 |
|
78 |
+
| 0.4299 | 1.4 | 210 | 0.6488 | 0.4934 |
|
79 |
+
| 0.425 | 1.47 | 220 | 0.5704 | 0.5132 |
|
80 |
+
| 0.4152 | 1.54 | 230 | 0.5582 | 0.5066 |
|
81 |
+
| 0.425 | 1.6 | 240 | 0.5489 | 0.5329 |
|
82 |
+
| 0.446 | 1.67 | 250 | 0.5479 | 0.5197 |
|
83 |
+
| 0.3908 | 1.74 | 260 | 0.5564 | 0.5164 |
|
84 |
+
| 0.443 | 1.8 | 270 | 0.5419 | 0.5033 |
|
85 |
+
| 0.4081 | 1.87 | 280 | 0.5948 | 0.5066 |
|
86 |
+
| 0.3944 | 1.94 | 290 | 0.5547 | 0.5395 |
|
87 |
+
| 0.4005 | 2.0 | 300 | 0.5616 | 0.5362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
### Framework versions
|
all_results.json
CHANGED
@@ -1,18 +1,7 @@
|
|
1 |
{
|
2 |
-
"epoch": 2.
|
3 |
-
"
|
4 |
-
"
|
5 |
-
"
|
6 |
-
"
|
7 |
-
"eval_precision_macro": 0.7222302630120379,
|
8 |
-
"eval_precision_micro": 0.8141509433962264,
|
9 |
-
"eval_recall_macro": 0.7125706602249756,
|
10 |
-
"eval_recall_micro": 0.8141509433962264,
|
11 |
-
"eval_runtime": 19.7133,
|
12 |
-
"eval_samples_per_second": 25.009,
|
13 |
-
"eval_steps_per_second": 1.573,
|
14 |
-
"train_loss": 0.43748926956381573,
|
15 |
-
"train_runtime": 1886.9121,
|
16 |
-
"train_samples_per_second": 3.809,
|
17 |
-
"train_steps_per_second": 0.237
|
18 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"train_loss": 0.5479170862833659,
|
4 |
+
"train_runtime": 1462.1781,
|
5 |
+
"train_samples_per_second": 3.283,
|
6 |
+
"train_steps_per_second": 0.205
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
train_results.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
-
"epoch": 2.
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
-
"train_samples_per_second": 3.
|
6 |
-
"train_steps_per_second": 0.
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 2.0,
|
3 |
+
"train_loss": 0.5479170862833659,
|
4 |
+
"train_runtime": 1462.1781,
|
5 |
+
"train_samples_per_second": 3.283,
|
6 |
+
"train_steps_per_second": 0.205
|
7 |
}
|
trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch": 2.
|
5 |
"eval_steps": 10,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -11,76 +11,76 @@
|
|
11 |
{
|
12 |
"epoch": 0.07,
|
13 |
"learning_rate": 3e-05,
|
14 |
-
"loss": 1.
|
15 |
"step": 10
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.07,
|
19 |
-
"eval_accuracy": 0.
|
20 |
-
"eval_loss": 0.
|
21 |
-
"eval_runtime": 16.
|
22 |
-
"eval_samples_per_second":
|
23 |
-
"eval_steps_per_second": 4.
|
24 |
"step": 10
|
25 |
},
|
26 |
{
|
27 |
"epoch": 0.13,
|
28 |
"learning_rate": 3e-05,
|
29 |
-
"loss": 0.
|
30 |
"step": 20
|
31 |
},
|
32 |
{
|
33 |
"epoch": 0.13,
|
34 |
-
"eval_accuracy": 0.
|
35 |
-
"eval_loss": 0.
|
36 |
-
"eval_runtime": 16.
|
37 |
-
"eval_samples_per_second":
|
38 |
-
"eval_steps_per_second": 4.
|
39 |
"step": 20
|
40 |
},
|
41 |
{
|
42 |
"epoch": 0.2,
|
43 |
"learning_rate": 3e-05,
|
44 |
-
"loss": 0.
|
45 |
"step": 30
|
46 |
},
|
47 |
{
|
48 |
"epoch": 0.2,
|
49 |
-
"eval_accuracy": 0.
|
50 |
-
"eval_loss": 0.
|
51 |
-
"eval_runtime": 16.
|
52 |
-
"eval_samples_per_second":
|
53 |
-
"eval_steps_per_second": 4.
|
54 |
"step": 30
|
55 |
},
|
56 |
{
|
57 |
"epoch": 0.27,
|
58 |
"learning_rate": 3e-05,
|
59 |
-
"loss": 0.
|
60 |
"step": 40
|
61 |
},
|
62 |
{
|
63 |
"epoch": 0.27,
|
64 |
-
"eval_accuracy": 0.
|
65 |
-
"eval_loss": 0.
|
66 |
-
"eval_runtime":
|
67 |
-
"eval_samples_per_second":
|
68 |
-
"eval_steps_per_second": 4.
|
69 |
"step": 40
|
70 |
},
|
71 |
{
|
72 |
"epoch": 0.33,
|
73 |
"learning_rate": 3e-05,
|
74 |
-
"loss": 0.
|
75 |
"step": 50
|
76 |
},
|
77 |
{
|
78 |
"epoch": 0.33,
|
79 |
-
"eval_accuracy": 0.
|
80 |
-
"eval_loss": 0.
|
81 |
-
"eval_runtime": 16.
|
82 |
-
"eval_samples_per_second":
|
83 |
-
"eval_steps_per_second": 4.
|
84 |
"step": 50
|
85 |
},
|
86 |
{
|
@@ -91,599 +91,389 @@
|
|
91 |
},
|
92 |
{
|
93 |
"epoch": 0.4,
|
94 |
-
"eval_accuracy": 0.
|
95 |
-
"eval_loss": 0.
|
96 |
-
"eval_runtime": 16.
|
97 |
-
"eval_samples_per_second":
|
98 |
-
"eval_steps_per_second": 4.
|
99 |
"step": 60
|
100 |
},
|
101 |
{
|
102 |
"epoch": 0.47,
|
103 |
"learning_rate": 3e-05,
|
104 |
-
"loss": 0.
|
105 |
"step": 70
|
106 |
},
|
107 |
{
|
108 |
"epoch": 0.47,
|
109 |
-
"eval_accuracy": 0.
|
110 |
-
"eval_loss": 0.
|
111 |
-
"eval_runtime": 16.
|
112 |
-
"eval_samples_per_second":
|
113 |
-
"eval_steps_per_second": 4.
|
114 |
"step": 70
|
115 |
},
|
116 |
{
|
117 |
"epoch": 0.53,
|
118 |
"learning_rate": 3e-05,
|
119 |
-
"loss": 0.
|
120 |
"step": 80
|
121 |
},
|
122 |
{
|
123 |
"epoch": 0.53,
|
124 |
-
"eval_accuracy": 0.
|
125 |
-
"eval_loss": 0.
|
126 |
-
"eval_runtime": 16.
|
127 |
-
"eval_samples_per_second":
|
128 |
-
"eval_steps_per_second": 4.
|
129 |
"step": 80
|
130 |
},
|
131 |
{
|
132 |
"epoch": 0.6,
|
133 |
"learning_rate": 3e-05,
|
134 |
-
"loss": 0.
|
135 |
"step": 90
|
136 |
},
|
137 |
{
|
138 |
"epoch": 0.6,
|
139 |
-
"eval_accuracy": 0.
|
140 |
-
"eval_loss": 0.
|
141 |
-
"eval_runtime": 16.
|
142 |
-
"eval_samples_per_second":
|
143 |
-
"eval_steps_per_second": 4.
|
144 |
"step": 90
|
145 |
},
|
146 |
{
|
147 |
"epoch": 0.67,
|
148 |
"learning_rate": 3e-05,
|
149 |
-
"loss": 0.
|
150 |
"step": 100
|
151 |
},
|
152 |
{
|
153 |
"epoch": 0.67,
|
154 |
-
"eval_accuracy": 0.
|
155 |
-
"eval_loss": 0.
|
156 |
-
"eval_runtime": 16.
|
157 |
-
"eval_samples_per_second":
|
158 |
-
"eval_steps_per_second": 4.
|
159 |
"step": 100
|
160 |
},
|
161 |
{
|
162 |
"epoch": 0.73,
|
163 |
"learning_rate": 3e-05,
|
164 |
-
"loss": 0.
|
165 |
"step": 110
|
166 |
},
|
167 |
{
|
168 |
"epoch": 0.73,
|
169 |
-
"eval_accuracy": 0.
|
170 |
-
"eval_loss": 0.
|
171 |
-
"eval_runtime": 16.
|
172 |
-
"eval_samples_per_second":
|
173 |
-
"eval_steps_per_second": 4.
|
174 |
"step": 110
|
175 |
},
|
176 |
{
|
177 |
"epoch": 0.8,
|
178 |
"learning_rate": 3e-05,
|
179 |
-
"loss": 0.
|
180 |
"step": 120
|
181 |
},
|
182 |
{
|
183 |
"epoch": 0.8,
|
184 |
-
"eval_accuracy": 0.
|
185 |
-
"eval_loss": 0.
|
186 |
-
"eval_runtime": 16.
|
187 |
-
"eval_samples_per_second":
|
188 |
-
"eval_steps_per_second": 4.
|
189 |
"step": 120
|
190 |
},
|
191 |
{
|
192 |
"epoch": 0.87,
|
193 |
"learning_rate": 3e-05,
|
194 |
-
"loss": 0.
|
195 |
"step": 130
|
196 |
},
|
197 |
{
|
198 |
"epoch": 0.87,
|
199 |
-
"eval_accuracy": 0.
|
200 |
-
"eval_loss": 0.
|
201 |
-
"eval_runtime": 16.
|
202 |
-
"eval_samples_per_second":
|
203 |
-
"eval_steps_per_second": 4.
|
204 |
"step": 130
|
205 |
},
|
206 |
{
|
207 |
"epoch": 0.93,
|
208 |
"learning_rate": 3e-05,
|
209 |
-
"loss": 0.
|
210 |
"step": 140
|
211 |
},
|
212 |
{
|
213 |
"epoch": 0.93,
|
214 |
-
"eval_accuracy": 0.
|
215 |
-
"eval_loss": 0.
|
216 |
-
"eval_runtime": 16.
|
217 |
-
"eval_samples_per_second":
|
218 |
-
"eval_steps_per_second": 4.
|
219 |
"step": 140
|
220 |
},
|
221 |
{
|
222 |
"epoch": 1.0,
|
223 |
"learning_rate": 3e-05,
|
224 |
-
"loss": 0.
|
225 |
"step": 150
|
226 |
},
|
227 |
{
|
228 |
"epoch": 1.0,
|
229 |
-
"eval_accuracy": 0.
|
230 |
-
"eval_loss": 0.
|
231 |
-
"eval_runtime": 16.
|
232 |
-
"eval_samples_per_second":
|
233 |
-
"eval_steps_per_second": 4.
|
234 |
"step": 150
|
235 |
},
|
236 |
{
|
237 |
"epoch": 1.07,
|
238 |
"learning_rate": 3e-05,
|
239 |
-
"loss": 0.
|
240 |
"step": 160
|
241 |
},
|
242 |
{
|
243 |
"epoch": 1.07,
|
244 |
-
"eval_accuracy": 0.
|
245 |
-
"eval_loss": 0.
|
246 |
-
"eval_runtime": 16.
|
247 |
-
"eval_samples_per_second":
|
248 |
-
"eval_steps_per_second": 4.
|
249 |
"step": 160
|
250 |
},
|
251 |
{
|
252 |
"epoch": 1.14,
|
253 |
"learning_rate": 3e-05,
|
254 |
-
"loss": 0.
|
255 |
"step": 170
|
256 |
},
|
257 |
{
|
258 |
"epoch": 1.14,
|
259 |
-
"eval_accuracy": 0.
|
260 |
-
"eval_loss": 0.
|
261 |
-
"eval_runtime": 16.
|
262 |
-
"eval_samples_per_second":
|
263 |
-
"eval_steps_per_second": 4.
|
264 |
"step": 170
|
265 |
},
|
266 |
{
|
267 |
"epoch": 1.2,
|
268 |
"learning_rate": 3e-05,
|
269 |
-
"loss": 0.
|
270 |
"step": 180
|
271 |
},
|
272 |
{
|
273 |
"epoch": 1.2,
|
274 |
-
"eval_accuracy": 0.
|
275 |
-
"eval_loss": 0.
|
276 |
-
"eval_runtime": 16.
|
277 |
-
"eval_samples_per_second":
|
278 |
-
"eval_steps_per_second": 4.
|
279 |
"step": 180
|
280 |
},
|
281 |
{
|
282 |
"epoch": 1.27,
|
283 |
"learning_rate": 3e-05,
|
284 |
-
"loss": 0.
|
285 |
"step": 190
|
286 |
},
|
287 |
{
|
288 |
"epoch": 1.27,
|
289 |
-
"eval_accuracy": 0.
|
290 |
-
"eval_loss": 0.
|
291 |
-
"eval_runtime": 16.
|
292 |
-
"eval_samples_per_second":
|
293 |
-
"eval_steps_per_second": 4.
|
294 |
"step": 190
|
295 |
},
|
296 |
{
|
297 |
"epoch": 1.34,
|
298 |
"learning_rate": 3e-05,
|
299 |
-
"loss": 0.
|
300 |
"step": 200
|
301 |
},
|
302 |
{
|
303 |
"epoch": 1.34,
|
304 |
"eval_accuracy": 0.5098684210526315,
|
305 |
-
"eval_loss": 0.
|
306 |
-
"eval_runtime": 16.
|
307 |
-
"eval_samples_per_second":
|
308 |
-
"eval_steps_per_second": 4.
|
309 |
"step": 200
|
310 |
},
|
311 |
{
|
312 |
"epoch": 1.4,
|
313 |
"learning_rate": 3e-05,
|
314 |
-
"loss": 0.
|
315 |
"step": 210
|
316 |
},
|
317 |
{
|
318 |
"epoch": 1.4,
|
319 |
-
"eval_accuracy": 0.
|
320 |
-
"eval_loss": 0.
|
321 |
-
"eval_runtime": 16.
|
322 |
-
"eval_samples_per_second":
|
323 |
-
"eval_steps_per_second": 4.
|
324 |
"step": 210
|
325 |
},
|
326 |
{
|
327 |
"epoch": 1.47,
|
328 |
"learning_rate": 3e-05,
|
329 |
-
"loss": 0.
|
330 |
"step": 220
|
331 |
},
|
332 |
{
|
333 |
"epoch": 1.47,
|
334 |
-
"eval_accuracy": 0.
|
335 |
-
"eval_loss": 0.
|
336 |
-
"eval_runtime": 16.
|
337 |
-
"eval_samples_per_second":
|
338 |
-
"eval_steps_per_second": 4.
|
339 |
"step": 220
|
340 |
},
|
341 |
{
|
342 |
"epoch": 1.54,
|
343 |
"learning_rate": 3e-05,
|
344 |
-
"loss": 0.
|
345 |
"step": 230
|
346 |
},
|
347 |
{
|
348 |
"epoch": 1.54,
|
349 |
-
"eval_accuracy": 0.
|
350 |
-
"eval_loss": 0.
|
351 |
-
"eval_runtime": 16.
|
352 |
-
"eval_samples_per_second":
|
353 |
-
"eval_steps_per_second": 4.
|
354 |
"step": 230
|
355 |
},
|
356 |
{
|
357 |
"epoch": 1.6,
|
358 |
"learning_rate": 3e-05,
|
359 |
-
"loss": 0.
|
360 |
"step": 240
|
361 |
},
|
362 |
{
|
363 |
"epoch": 1.6,
|
364 |
-
"eval_accuracy": 0.
|
365 |
-
"eval_loss": 0.
|
366 |
-
"eval_runtime": 16.
|
367 |
-
"eval_samples_per_second":
|
368 |
-
"eval_steps_per_second": 4.
|
369 |
"step": 240
|
370 |
},
|
371 |
{
|
372 |
"epoch": 1.67,
|
373 |
"learning_rate": 3e-05,
|
374 |
-
"loss": 0.
|
375 |
"step": 250
|
376 |
},
|
377 |
{
|
378 |
"epoch": 1.67,
|
379 |
-
"eval_accuracy": 0.
|
380 |
-
"eval_loss": 0.
|
381 |
-
"eval_runtime": 16.
|
382 |
-
"eval_samples_per_second":
|
383 |
-
"eval_steps_per_second": 4.
|
384 |
"step": 250
|
385 |
},
|
386 |
{
|
387 |
"epoch": 1.74,
|
388 |
"learning_rate": 3e-05,
|
389 |
-
"loss": 0.
|
390 |
"step": 260
|
391 |
},
|
392 |
{
|
393 |
"epoch": 1.74,
|
394 |
-
"eval_accuracy": 0.
|
395 |
-
"eval_loss": 0.
|
396 |
-
"eval_runtime": 16.
|
397 |
-
"eval_samples_per_second":
|
398 |
-
"eval_steps_per_second": 4.
|
399 |
"step": 260
|
400 |
},
|
401 |
{
|
402 |
"epoch": 1.8,
|
403 |
"learning_rate": 3e-05,
|
404 |
-
"loss": 0.
|
405 |
"step": 270
|
406 |
},
|
407 |
{
|
408 |
"epoch": 1.8,
|
409 |
-
"eval_accuracy": 0.
|
410 |
-
"eval_loss": 0.
|
411 |
-
"eval_runtime": 16.
|
412 |
-
"eval_samples_per_second":
|
413 |
-
"eval_steps_per_second": 4.
|
414 |
"step": 270
|
415 |
},
|
416 |
{
|
417 |
"epoch": 1.87,
|
418 |
"learning_rate": 3e-05,
|
419 |
-
"loss": 0.
|
420 |
"step": 280
|
421 |
},
|
422 |
{
|
423 |
"epoch": 1.87,
|
424 |
"eval_accuracy": 0.506578947368421,
|
425 |
-
"eval_loss": 0.
|
426 |
-
"eval_runtime": 16.
|
427 |
-
"eval_samples_per_second":
|
428 |
-
"eval_steps_per_second": 4.
|
429 |
"step": 280
|
430 |
},
|
431 |
{
|
432 |
"epoch": 1.94,
|
433 |
"learning_rate": 3e-05,
|
434 |
-
"loss": 0.
|
435 |
"step": 290
|
436 |
},
|
437 |
{
|
438 |
"epoch": 1.94,
|
439 |
-
"eval_accuracy": 0.
|
440 |
-
"eval_loss": 0.
|
441 |
-
"eval_runtime": 16.
|
442 |
-
"eval_samples_per_second":
|
443 |
-
"eval_steps_per_second": 4.
|
444 |
"step": 290
|
445 |
},
|
446 |
{
|
447 |
"epoch": 2.0,
|
448 |
"learning_rate": 3e-05,
|
449 |
-
"loss": 0.
|
450 |
"step": 300
|
451 |
},
|
452 |
{
|
453 |
"epoch": 2.0,
|
454 |
-
"eval_accuracy": 0.5164473684210527,
|
455 |
-
"eval_loss": 0.5669550895690918,
|
456 |
-
"eval_runtime": 16.3688,
|
457 |
-
"eval_samples_per_second": 18.572,
|
458 |
-
"eval_steps_per_second": 4.643,
|
459 |
-
"step": 300
|
460 |
-
},
|
461 |
-
{
|
462 |
-
"epoch": 2.07,
|
463 |
-
"learning_rate": 3e-05,
|
464 |
-
"loss": 0.2304,
|
465 |
-
"step": 310
|
466 |
-
},
|
467 |
-
{
|
468 |
-
"epoch": 2.07,
|
469 |
-
"eval_accuracy": 0.5361842105263158,
|
470 |
-
"eval_loss": 0.8199814558029175,
|
471 |
-
"eval_runtime": 16.3644,
|
472 |
-
"eval_samples_per_second": 18.577,
|
473 |
-
"eval_steps_per_second": 4.644,
|
474 |
-
"step": 310
|
475 |
-
},
|
476 |
-
{
|
477 |
-
"epoch": 2.14,
|
478 |
-
"learning_rate": 3e-05,
|
479 |
-
"loss": 0.1696,
|
480 |
-
"step": 320
|
481 |
-
},
|
482 |
-
{
|
483 |
-
"epoch": 2.14,
|
484 |
-
"eval_accuracy": 0.5296052631578947,
|
485 |
-
"eval_loss": 0.9087279438972473,
|
486 |
-
"eval_runtime": 16.362,
|
487 |
-
"eval_samples_per_second": 18.58,
|
488 |
-
"eval_steps_per_second": 4.645,
|
489 |
-
"step": 320
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"epoch": 2.2,
|
493 |
-
"learning_rate": 3e-05,
|
494 |
-
"loss": 0.2255,
|
495 |
-
"step": 330
|
496 |
-
},
|
497 |
-
{
|
498 |
-
"epoch": 2.2,
|
499 |
"eval_accuracy": 0.5361842105263158,
|
500 |
-
"eval_loss": 0.
|
501 |
-
"eval_runtime": 16.
|
502 |
-
"eval_samples_per_second":
|
503 |
-
"eval_steps_per_second": 4.
|
504 |
-
"step":
|
505 |
-
},
|
506 |
-
{
|
507 |
-
"epoch": 2.27,
|
508 |
-
"learning_rate": 3e-05,
|
509 |
-
"loss": 0.1923,
|
510 |
-
"step": 340
|
511 |
-
},
|
512 |
-
{
|
513 |
-
"epoch": 2.27,
|
514 |
-
"eval_accuracy": 0.5197368421052632,
|
515 |
-
"eval_loss": 0.701989471912384,
|
516 |
-
"eval_runtime": 16.3692,
|
517 |
-
"eval_samples_per_second": 18.571,
|
518 |
-
"eval_steps_per_second": 4.643,
|
519 |
-
"step": 340
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"epoch": 2.34,
|
523 |
-
"learning_rate": 3e-05,
|
524 |
-
"loss": 0.281,
|
525 |
-
"step": 350
|
526 |
-
},
|
527 |
-
{
|
528 |
-
"epoch": 2.34,
|
529 |
-
"eval_accuracy": 0.5032894736842105,
|
530 |
-
"eval_loss": 0.6653422117233276,
|
531 |
-
"eval_runtime": 16.3703,
|
532 |
-
"eval_samples_per_second": 18.57,
|
533 |
-
"eval_steps_per_second": 4.643,
|
534 |
-
"step": 350
|
535 |
-
},
|
536 |
-
{
|
537 |
-
"epoch": 2.4,
|
538 |
-
"learning_rate": 3e-05,
|
539 |
-
"loss": 0.2311,
|
540 |
-
"step": 360
|
541 |
-
},
|
542 |
-
{
|
543 |
-
"epoch": 2.4,
|
544 |
-
"eval_accuracy": 0.5131578947368421,
|
545 |
-
"eval_loss": 0.6411683559417725,
|
546 |
-
"eval_runtime": 16.3702,
|
547 |
-
"eval_samples_per_second": 18.57,
|
548 |
-
"eval_steps_per_second": 4.643,
|
549 |
-
"step": 360
|
550 |
-
},
|
551 |
-
{
|
552 |
-
"epoch": 2.47,
|
553 |
-
"learning_rate": 3e-05,
|
554 |
-
"loss": 0.1523,
|
555 |
-
"step": 370
|
556 |
-
},
|
557 |
-
{
|
558 |
-
"epoch": 2.47,
|
559 |
-
"eval_accuracy": 0.5230263157894737,
|
560 |
-
"eval_loss": 0.8846220970153809,
|
561 |
-
"eval_runtime": 16.3728,
|
562 |
-
"eval_samples_per_second": 18.567,
|
563 |
-
"eval_steps_per_second": 4.642,
|
564 |
-
"step": 370
|
565 |
-
},
|
566 |
-
{
|
567 |
-
"epoch": 2.54,
|
568 |
-
"learning_rate": 3e-05,
|
569 |
-
"loss": 0.2451,
|
570 |
-
"step": 380
|
571 |
-
},
|
572 |
-
{
|
573 |
-
"epoch": 2.54,
|
574 |
-
"eval_accuracy": 0.5164473684210527,
|
575 |
-
"eval_loss": 0.9251819252967834,
|
576 |
-
"eval_runtime": 16.379,
|
577 |
-
"eval_samples_per_second": 18.56,
|
578 |
-
"eval_steps_per_second": 4.64,
|
579 |
-
"step": 380
|
580 |
-
},
|
581 |
-
{
|
582 |
-
"epoch": 2.6,
|
583 |
-
"learning_rate": 3e-05,
|
584 |
-
"loss": 0.2022,
|
585 |
-
"step": 390
|
586 |
-
},
|
587 |
-
{
|
588 |
-
"epoch": 2.6,
|
589 |
-
"eval_accuracy": 0.5197368421052632,
|
590 |
-
"eval_loss": 0.7422206401824951,
|
591 |
-
"eval_runtime": 16.3727,
|
592 |
-
"eval_samples_per_second": 18.567,
|
593 |
-
"eval_steps_per_second": 4.642,
|
594 |
-
"step": 390
|
595 |
-
},
|
596 |
-
{
|
597 |
-
"epoch": 2.67,
|
598 |
-
"learning_rate": 3e-05,
|
599 |
-
"loss": 0.217,
|
600 |
-
"step": 400
|
601 |
-
},
|
602 |
-
{
|
603 |
-
"epoch": 2.67,
|
604 |
-
"eval_accuracy": 0.5328947368421053,
|
605 |
-
"eval_loss": 0.7557851076126099,
|
606 |
-
"eval_runtime": 16.3638,
|
607 |
-
"eval_samples_per_second": 18.578,
|
608 |
-
"eval_steps_per_second": 4.644,
|
609 |
-
"step": 400
|
610 |
-
},
|
611 |
-
{
|
612 |
-
"epoch": 2.74,
|
613 |
-
"learning_rate": 3e-05,
|
614 |
-
"loss": 0.165,
|
615 |
-
"step": 410
|
616 |
-
},
|
617 |
-
{
|
618 |
-
"epoch": 2.74,
|
619 |
-
"eval_accuracy": 0.5427631578947368,
|
620 |
-
"eval_loss": 0.7846018075942993,
|
621 |
-
"eval_runtime": 16.3674,
|
622 |
-
"eval_samples_per_second": 18.574,
|
623 |
-
"eval_steps_per_second": 4.643,
|
624 |
-
"step": 410
|
625 |
-
},
|
626 |
-
{
|
627 |
-
"epoch": 2.8,
|
628 |
-
"learning_rate": 3e-05,
|
629 |
-
"loss": 0.2025,
|
630 |
-
"step": 420
|
631 |
-
},
|
632 |
-
{
|
633 |
-
"epoch": 2.8,
|
634 |
-
"eval_accuracy": 0.5230263157894737,
|
635 |
-
"eval_loss": 0.725389301776886,
|
636 |
-
"eval_runtime": 16.3775,
|
637 |
-
"eval_samples_per_second": 18.562,
|
638 |
-
"eval_steps_per_second": 4.641,
|
639 |
-
"step": 420
|
640 |
-
},
|
641 |
-
{
|
642 |
-
"epoch": 2.87,
|
643 |
-
"learning_rate": 3e-05,
|
644 |
-
"loss": 0.2201,
|
645 |
-
"step": 430
|
646 |
-
},
|
647 |
-
{
|
648 |
-
"epoch": 2.87,
|
649 |
-
"eval_accuracy": 0.5296052631578947,
|
650 |
-
"eval_loss": 0.6530900001525879,
|
651 |
-
"eval_runtime": 16.3694,
|
652 |
-
"eval_samples_per_second": 18.571,
|
653 |
-
"eval_steps_per_second": 4.643,
|
654 |
-
"step": 430
|
655 |
},
|
656 |
{
|
657 |
-
"epoch": 2.
|
658 |
-
"
|
659 |
-
"
|
660 |
-
"
|
661 |
-
|
662 |
-
|
663 |
-
"
|
664 |
-
"eval_accuracy": 0.5493421052631579,
|
665 |
-
"eval_loss": 0.7827179431915283,
|
666 |
-
"eval_runtime": 16.3682,
|
667 |
-
"eval_samples_per_second": 18.573,
|
668 |
-
"eval_steps_per_second": 4.643,
|
669 |
-
"step": 440
|
670 |
-
},
|
671 |
-
{
|
672 |
-
"epoch": 2.98,
|
673 |
-
"step": 447,
|
674 |
-
"total_flos": 1.09848374069035e+17,
|
675 |
-
"train_loss": 0.43748926956381573,
|
676 |
-
"train_runtime": 1886.9121,
|
677 |
-
"train_samples_per_second": 3.809,
|
678 |
-
"train_steps_per_second": 0.237
|
679 |
}
|
680 |
],
|
681 |
"logging_steps": 10,
|
682 |
-
"max_steps":
|
683 |
"num_input_tokens_seen": 0,
|
684 |
"num_train_epochs": 3,
|
685 |
-
"save_steps":
|
686 |
-
"total_flos":
|
687 |
"train_batch_size": 4,
|
688 |
"trial_name": null,
|
689 |
"trial_params": null
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.003338898163606,
|
5 |
"eval_steps": 10,
|
6 |
+
"global_step": 300,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
11 |
{
|
12 |
"epoch": 0.07,
|
13 |
"learning_rate": 3e-05,
|
14 |
+
"loss": 1.5245,
|
15 |
"step": 10
|
16 |
},
|
17 |
{
|
18 |
"epoch": 0.07,
|
19 |
+
"eval_accuracy": 0.3355263157894737,
|
20 |
+
"eval_loss": 0.6506821513175964,
|
21 |
+
"eval_runtime": 16.9243,
|
22 |
+
"eval_samples_per_second": 17.962,
|
23 |
+
"eval_steps_per_second": 4.491,
|
24 |
"step": 10
|
25 |
},
|
26 |
{
|
27 |
"epoch": 0.13,
|
28 |
"learning_rate": 3e-05,
|
29 |
+
"loss": 0.6666,
|
30 |
"step": 20
|
31 |
},
|
32 |
{
|
33 |
"epoch": 0.13,
|
34 |
+
"eval_accuracy": 0.3815789473684211,
|
35 |
+
"eval_loss": 0.6464425325393677,
|
36 |
+
"eval_runtime": 16.9195,
|
37 |
+
"eval_samples_per_second": 17.967,
|
38 |
+
"eval_steps_per_second": 4.492,
|
39 |
"step": 20
|
40 |
},
|
41 |
{
|
42 |
"epoch": 0.2,
|
43 |
"learning_rate": 3e-05,
|
44 |
+
"loss": 0.6527,
|
45 |
"step": 30
|
46 |
},
|
47 |
{
|
48 |
"epoch": 0.2,
|
49 |
+
"eval_accuracy": 0.3684210526315789,
|
50 |
+
"eval_loss": 0.6426967978477478,
|
51 |
+
"eval_runtime": 16.9282,
|
52 |
+
"eval_samples_per_second": 17.958,
|
53 |
+
"eval_steps_per_second": 4.49,
|
54 |
"step": 30
|
55 |
},
|
56 |
{
|
57 |
"epoch": 0.27,
|
58 |
"learning_rate": 3e-05,
|
59 |
+
"loss": 0.6168,
|
60 |
"step": 40
|
61 |
},
|
62 |
{
|
63 |
"epoch": 0.27,
|
64 |
+
"eval_accuracy": 0.3980263157894737,
|
65 |
+
"eval_loss": 0.6321499943733215,
|
66 |
+
"eval_runtime": 17.0092,
|
67 |
+
"eval_samples_per_second": 17.873,
|
68 |
+
"eval_steps_per_second": 4.468,
|
69 |
"step": 40
|
70 |
},
|
71 |
{
|
72 |
"epoch": 0.33,
|
73 |
"learning_rate": 3e-05,
|
74 |
+
"loss": 0.6584,
|
75 |
"step": 50
|
76 |
},
|
77 |
{
|
78 |
"epoch": 0.33,
|
79 |
+
"eval_accuracy": 0.39144736842105265,
|
80 |
+
"eval_loss": 0.6181844472885132,
|
81 |
+
"eval_runtime": 16.9419,
|
82 |
+
"eval_samples_per_second": 17.944,
|
83 |
+
"eval_steps_per_second": 4.486,
|
84 |
"step": 50
|
85 |
},
|
86 |
{
|
|
|
91 |
},
|
92 |
{
|
93 |
"epoch": 0.4,
|
94 |
+
"eval_accuracy": 0.4144736842105263,
|
95 |
+
"eval_loss": 0.6244160532951355,
|
96 |
+
"eval_runtime": 16.9269,
|
97 |
+
"eval_samples_per_second": 17.96,
|
98 |
+
"eval_steps_per_second": 4.49,
|
99 |
"step": 60
|
100 |
},
|
101 |
{
|
102 |
"epoch": 0.47,
|
103 |
"learning_rate": 3e-05,
|
104 |
+
"loss": 0.5924,
|
105 |
"step": 70
|
106 |
},
|
107 |
{
|
108 |
"epoch": 0.47,
|
109 |
+
"eval_accuracy": 0.4342105263157895,
|
110 |
+
"eval_loss": 0.6033625602722168,
|
111 |
+
"eval_runtime": 16.9236,
|
112 |
+
"eval_samples_per_second": 17.963,
|
113 |
+
"eval_steps_per_second": 4.491,
|
114 |
"step": 70
|
115 |
},
|
116 |
{
|
117 |
"epoch": 0.53,
|
118 |
"learning_rate": 3e-05,
|
119 |
+
"loss": 0.6069,
|
120 |
"step": 80
|
121 |
},
|
122 |
{
|
123 |
"epoch": 0.53,
|
124 |
+
"eval_accuracy": 0.4375,
|
125 |
+
"eval_loss": 0.6096391677856445,
|
126 |
+
"eval_runtime": 16.9238,
|
127 |
+
"eval_samples_per_second": 17.963,
|
128 |
+
"eval_steps_per_second": 4.491,
|
129 |
"step": 80
|
130 |
},
|
131 |
{
|
132 |
"epoch": 0.6,
|
133 |
"learning_rate": 3e-05,
|
134 |
+
"loss": 0.5999,
|
135 |
"step": 90
|
136 |
},
|
137 |
{
|
138 |
"epoch": 0.6,
|
139 |
+
"eval_accuracy": 0.4407894736842105,
|
140 |
+
"eval_loss": 0.6095999479293823,
|
141 |
+
"eval_runtime": 16.9342,
|
142 |
+
"eval_samples_per_second": 17.952,
|
143 |
+
"eval_steps_per_second": 4.488,
|
144 |
"step": 90
|
145 |
},
|
146 |
{
|
147 |
"epoch": 0.67,
|
148 |
"learning_rate": 3e-05,
|
149 |
+
"loss": 0.6206,
|
150 |
"step": 100
|
151 |
},
|
152 |
{
|
153 |
"epoch": 0.67,
|
154 |
+
"eval_accuracy": 0.45723684210526316,
|
155 |
+
"eval_loss": 0.607021152973175,
|
156 |
+
"eval_runtime": 16.9304,
|
157 |
+
"eval_samples_per_second": 17.956,
|
158 |
+
"eval_steps_per_second": 4.489,
|
159 |
"step": 100
|
160 |
},
|
161 |
{
|
162 |
"epoch": 0.73,
|
163 |
"learning_rate": 3e-05,
|
164 |
+
"loss": 0.5793,
|
165 |
"step": 110
|
166 |
},
|
167 |
{
|
168 |
"epoch": 0.73,
|
169 |
+
"eval_accuracy": 0.45723684210526316,
|
170 |
+
"eval_loss": 0.601601243019104,
|
171 |
+
"eval_runtime": 16.9375,
|
172 |
+
"eval_samples_per_second": 17.948,
|
173 |
+
"eval_steps_per_second": 4.487,
|
174 |
"step": 110
|
175 |
},
|
176 |
{
|
177 |
"epoch": 0.8,
|
178 |
"learning_rate": 3e-05,
|
179 |
+
"loss": 0.6208,
|
180 |
"step": 120
|
181 |
},
|
182 |
{
|
183 |
"epoch": 0.8,
|
184 |
+
"eval_accuracy": 0.4605263157894737,
|
185 |
+
"eval_loss": 0.5902404189109802,
|
186 |
+
"eval_runtime": 16.924,
|
187 |
+
"eval_samples_per_second": 17.963,
|
188 |
+
"eval_steps_per_second": 4.491,
|
189 |
"step": 120
|
190 |
},
|
191 |
{
|
192 |
"epoch": 0.87,
|
193 |
"learning_rate": 3e-05,
|
194 |
+
"loss": 0.5622,
|
195 |
"step": 130
|
196 |
},
|
197 |
{
|
198 |
"epoch": 0.87,
|
199 |
+
"eval_accuracy": 0.4769736842105263,
|
200 |
+
"eval_loss": 0.5775408744812012,
|
201 |
+
"eval_runtime": 16.9329,
|
202 |
+
"eval_samples_per_second": 17.953,
|
203 |
+
"eval_steps_per_second": 4.488,
|
204 |
"step": 130
|
205 |
},
|
206 |
{
|
207 |
"epoch": 0.93,
|
208 |
"learning_rate": 3e-05,
|
209 |
+
"loss": 0.5502,
|
210 |
"step": 140
|
211 |
},
|
212 |
{
|
213 |
"epoch": 0.93,
|
214 |
+
"eval_accuracy": 0.46710526315789475,
|
215 |
+
"eval_loss": 0.57607102394104,
|
216 |
+
"eval_runtime": 16.9226,
|
217 |
+
"eval_samples_per_second": 17.964,
|
218 |
+
"eval_steps_per_second": 4.491,
|
219 |
"step": 140
|
220 |
},
|
221 |
{
|
222 |
"epoch": 1.0,
|
223 |
"learning_rate": 3e-05,
|
224 |
+
"loss": 0.5958,
|
225 |
"step": 150
|
226 |
},
|
227 |
{
|
228 |
"epoch": 1.0,
|
229 |
+
"eval_accuracy": 0.4901315789473684,
|
230 |
+
"eval_loss": 0.5606401562690735,
|
231 |
+
"eval_runtime": 16.929,
|
232 |
+
"eval_samples_per_second": 17.957,
|
233 |
+
"eval_steps_per_second": 4.489,
|
234 |
"step": 150
|
235 |
},
|
236 |
{
|
237 |
"epoch": 1.07,
|
238 |
"learning_rate": 3e-05,
|
239 |
+
"loss": 0.4558,
|
240 |
"step": 160
|
241 |
},
|
242 |
{
|
243 |
"epoch": 1.07,
|
244 |
+
"eval_accuracy": 0.47368421052631576,
|
245 |
+
"eval_loss": 0.5839833617210388,
|
246 |
+
"eval_runtime": 16.9304,
|
247 |
+
"eval_samples_per_second": 17.956,
|
248 |
+
"eval_steps_per_second": 4.489,
|
249 |
"step": 160
|
250 |
},
|
251 |
{
|
252 |
"epoch": 1.14,
|
253 |
"learning_rate": 3e-05,
|
254 |
+
"loss": 0.4411,
|
255 |
"step": 170
|
256 |
},
|
257 |
{
|
258 |
"epoch": 1.14,
|
259 |
+
"eval_accuracy": 0.4901315789473684,
|
260 |
+
"eval_loss": 0.5631235837936401,
|
261 |
+
"eval_runtime": 16.9238,
|
262 |
+
"eval_samples_per_second": 17.963,
|
263 |
+
"eval_steps_per_second": 4.491,
|
264 |
"step": 170
|
265 |
},
|
266 |
{
|
267 |
"epoch": 1.2,
|
268 |
"learning_rate": 3e-05,
|
269 |
+
"loss": 0.4144,
|
270 |
"step": 180
|
271 |
},
|
272 |
{
|
273 |
"epoch": 1.2,
|
274 |
+
"eval_accuracy": 0.5,
|
275 |
+
"eval_loss": 0.5744868516921997,
|
276 |
+
"eval_runtime": 16.9382,
|
277 |
+
"eval_samples_per_second": 17.948,
|
278 |
+
"eval_steps_per_second": 4.487,
|
279 |
"step": 180
|
280 |
},
|
281 |
{
|
282 |
"epoch": 1.27,
|
283 |
"learning_rate": 3e-05,
|
284 |
+
"loss": 0.4647,
|
285 |
"step": 190
|
286 |
},
|
287 |
{
|
288 |
"epoch": 1.27,
|
289 |
+
"eval_accuracy": 0.4605263157894737,
|
290 |
+
"eval_loss": 0.593177080154419,
|
291 |
+
"eval_runtime": 16.932,
|
292 |
+
"eval_samples_per_second": 17.954,
|
293 |
+
"eval_steps_per_second": 4.489,
|
294 |
"step": 190
|
295 |
},
|
296 |
{
|
297 |
"epoch": 1.34,
|
298 |
"learning_rate": 3e-05,
|
299 |
+
"loss": 0.4504,
|
300 |
"step": 200
|
301 |
},
|
302 |
{
|
303 |
"epoch": 1.34,
|
304 |
"eval_accuracy": 0.5098684210526315,
|
305 |
+
"eval_loss": 0.5798581838607788,
|
306 |
+
"eval_runtime": 16.9337,
|
307 |
+
"eval_samples_per_second": 17.952,
|
308 |
+
"eval_steps_per_second": 4.488,
|
309 |
"step": 200
|
310 |
},
|
311 |
{
|
312 |
"epoch": 1.4,
|
313 |
"learning_rate": 3e-05,
|
314 |
+
"loss": 0.4299,
|
315 |
"step": 210
|
316 |
},
|
317 |
{
|
318 |
"epoch": 1.4,
|
319 |
+
"eval_accuracy": 0.4934210526315789,
|
320 |
+
"eval_loss": 0.64882493019104,
|
321 |
+
"eval_runtime": 16.9391,
|
322 |
+
"eval_samples_per_second": 17.947,
|
323 |
+
"eval_steps_per_second": 4.487,
|
324 |
"step": 210
|
325 |
},
|
326 |
{
|
327 |
"epoch": 1.47,
|
328 |
"learning_rate": 3e-05,
|
329 |
+
"loss": 0.425,
|
330 |
"step": 220
|
331 |
},
|
332 |
{
|
333 |
"epoch": 1.47,
|
334 |
+
"eval_accuracy": 0.5131578947368421,
|
335 |
+
"eval_loss": 0.5704348683357239,
|
336 |
+
"eval_runtime": 16.9325,
|
337 |
+
"eval_samples_per_second": 17.954,
|
338 |
+
"eval_steps_per_second": 4.488,
|
339 |
"step": 220
|
340 |
},
|
341 |
{
|
342 |
"epoch": 1.54,
|
343 |
"learning_rate": 3e-05,
|
344 |
+
"loss": 0.4152,
|
345 |
"step": 230
|
346 |
},
|
347 |
{
|
348 |
"epoch": 1.54,
|
349 |
+
"eval_accuracy": 0.506578947368421,
|
350 |
+
"eval_loss": 0.5582014322280884,
|
351 |
+
"eval_runtime": 16.9258,
|
352 |
+
"eval_samples_per_second": 17.961,
|
353 |
+
"eval_steps_per_second": 4.49,
|
354 |
"step": 230
|
355 |
},
|
356 |
{
|
357 |
"epoch": 1.6,
|
358 |
"learning_rate": 3e-05,
|
359 |
+
"loss": 0.425,
|
360 |
"step": 240
|
361 |
},
|
362 |
{
|
363 |
"epoch": 1.6,
|
364 |
+
"eval_accuracy": 0.5328947368421053,
|
365 |
+
"eval_loss": 0.5488855838775635,
|
366 |
+
"eval_runtime": 16.9288,
|
367 |
+
"eval_samples_per_second": 17.958,
|
368 |
+
"eval_steps_per_second": 4.489,
|
369 |
"step": 240
|
370 |
},
|
371 |
{
|
372 |
"epoch": 1.67,
|
373 |
"learning_rate": 3e-05,
|
374 |
+
"loss": 0.446,
|
375 |
"step": 250
|
376 |
},
|
377 |
{
|
378 |
"epoch": 1.67,
|
379 |
+
"eval_accuracy": 0.5197368421052632,
|
380 |
+
"eval_loss": 0.5479023456573486,
|
381 |
+
"eval_runtime": 16.9319,
|
382 |
+
"eval_samples_per_second": 17.954,
|
383 |
+
"eval_steps_per_second": 4.489,
|
384 |
"step": 250
|
385 |
},
|
386 |
{
|
387 |
"epoch": 1.74,
|
388 |
"learning_rate": 3e-05,
|
389 |
+
"loss": 0.3908,
|
390 |
"step": 260
|
391 |
},
|
392 |
{
|
393 |
"epoch": 1.74,
|
394 |
+
"eval_accuracy": 0.5164473684210527,
|
395 |
+
"eval_loss": 0.5564107894897461,
|
396 |
+
"eval_runtime": 16.9414,
|
397 |
+
"eval_samples_per_second": 17.944,
|
398 |
+
"eval_steps_per_second": 4.486,
|
399 |
"step": 260
|
400 |
},
|
401 |
{
|
402 |
"epoch": 1.8,
|
403 |
"learning_rate": 3e-05,
|
404 |
+
"loss": 0.443,
|
405 |
"step": 270
|
406 |
},
|
407 |
{
|
408 |
"epoch": 1.8,
|
409 |
+
"eval_accuracy": 0.5032894736842105,
|
410 |
+
"eval_loss": 0.5418796539306641,
|
411 |
+
"eval_runtime": 16.9208,
|
412 |
+
"eval_samples_per_second": 17.966,
|
413 |
+
"eval_steps_per_second": 4.492,
|
414 |
"step": 270
|
415 |
},
|
416 |
{
|
417 |
"epoch": 1.87,
|
418 |
"learning_rate": 3e-05,
|
419 |
+
"loss": 0.4081,
|
420 |
"step": 280
|
421 |
},
|
422 |
{
|
423 |
"epoch": 1.87,
|
424 |
"eval_accuracy": 0.506578947368421,
|
425 |
+
"eval_loss": 0.5948407053947449,
|
426 |
+
"eval_runtime": 16.9289,
|
427 |
+
"eval_samples_per_second": 17.957,
|
428 |
+
"eval_steps_per_second": 4.489,
|
429 |
"step": 280
|
430 |
},
|
431 |
{
|
432 |
"epoch": 1.94,
|
433 |
"learning_rate": 3e-05,
|
434 |
+
"loss": 0.3944,
|
435 |
"step": 290
|
436 |
},
|
437 |
{
|
438 |
"epoch": 1.94,
|
439 |
+
"eval_accuracy": 0.5394736842105263,
|
440 |
+
"eval_loss": 0.554680347442627,
|
441 |
+
"eval_runtime": 16.9311,
|
442 |
+
"eval_samples_per_second": 17.955,
|
443 |
+
"eval_steps_per_second": 4.489,
|
444 |
"step": 290
|
445 |
},
|
446 |
{
|
447 |
"epoch": 2.0,
|
448 |
"learning_rate": 3e-05,
|
449 |
+
"loss": 0.4005,
|
450 |
"step": 300
|
451 |
},
|
452 |
{
|
453 |
"epoch": 2.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
"eval_accuracy": 0.5361842105263158,
|
455 |
+
"eval_loss": 0.5615983009338379,
|
456 |
+
"eval_runtime": 16.9277,
|
457 |
+
"eval_samples_per_second": 17.959,
|
458 |
+
"eval_steps_per_second": 4.49,
|
459 |
+
"step": 300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
},
|
461 |
{
|
462 |
+
"epoch": 2.0,
|
463 |
+
"step": 300,
|
464 |
+
"total_flos": 7.380159778455552e+16,
|
465 |
+
"train_loss": 0.5479170862833659,
|
466 |
+
"train_runtime": 1462.1781,
|
467 |
+
"train_samples_per_second": 3.283,
|
468 |
+
"train_steps_per_second": 0.205
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
}
|
470 |
],
|
471 |
"logging_steps": 10,
|
472 |
+
"max_steps": 300,
|
473 |
"num_input_tokens_seen": 0,
|
474 |
"num_train_epochs": 3,
|
475 |
+
"save_steps": 150,
|
476 |
+
"total_flos": 7.380159778455552e+16,
|
477 |
"train_batch_size": 4,
|
478 |
"trial_name": null,
|
479 |
"trial_params": null
|