File size: 1,777 Bytes
6da16d6
 
 
cf48103
6da16d6
 
 
b884236
a783bdb
2afbeaf
 
b884236
 
 
 
 
 
 
 
 
28bced0
 
 
 
b884236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eaab30
 
b884236
5eaab30
7f44353
 
85111b5
 
b884236
 
 
 
 
 
 
 
 
 
 
 
85111b5
7f44353
157f9d8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

---
language: en 
thumbnail: "https://i.ibb.co/HBqvBFY/mountain-xianxia-chinese-scenic-landscape-craggy-mist-action-scene-pagoda-s-2336925014-1.png"
tags:
- text generation
- pytorch
license: mit

---

#Qilin-lit-6b Description

Most updated version is V1.1.0 which is finetuned on 550 MB of webnovels found on the NovelUpdates website. (https://www.novelupdates.com/)


## Downstream Uses

This model can be used for entertainment purposes and as a creative writing assistant for fiction writers.

## Usage with Kobold AI Colab

Open the code that loads the models and replace a path with "rexwang8/qilin-lit-6b" and select that model.

## Example Code

```
from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained('rexwang8/qilin-lit-6b')
tokenizer = AutoTokenizer.from_pretrained('rexwang8/lit-6b')

prompt = '''I had eyes but couldn't see Mount Tai!'''

input_ids = tokenizer.encode(prompt, return_tensors='pt')
output = model.generate(input_ids, do_sample=True, temperature=1.0, top_p=0.9, repetition_penalty=1.2, max_length=len(input_ids[0])+100, pad_token_id=tokenizer.eos_token_id)

generated_text = tokenizer.decode(output[0])
print(generated_text)
```

---
## Qilin-lit-6b (V1.1.0) 

Fine-tuned version of EleutherAI/gpt-j-6B (https://huggingface.co/EleutherAI/gpt-j-6B) on Coreweave's infrastructure (<https://www.coreweave.com/>) using an A40 over ~80 hours.

3150 steps, 1 epoch trained on 550 MB of primarily Xianxia genre Webnovels. (Translated to English)

---

## Team members and Acknowledgements

Rex Wang - Author

Coreweave - Computational materials

With help from:

Wes Brown, Anthony Mercurio

---

## Version History

1.1.0 - 550 MB Dataset 3150 steps epoch 1

1.0.0 - 100 MB Dataset 300 steps epoch 1