xtts-gui / xtts_demo.py
rfs89y's picture
Primeiro envio para o reposit贸rio remoto
8f631c9
import argparse
import os
import sys
import tempfile
from pathlib import Path
import shutil
import glob
import gradio as gr
import librosa.display
import numpy as np
import torch
import torchaudio
import traceback
from utils.formatter import format_audio_list,find_latest_best_model, list_audios
from utils.gpt_train import train_gpt
from faster_whisper import WhisperModel
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import requests
def download_file(url, destination):
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(destination, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded file to {destination}")
return destination
except Exception as e:
print(f"Failed to download the file: {e}")
return None
# Clear logs
def remove_log_file(file_path):
log_file = Path(file_path)
if log_file.exists() and log_file.is_file():
log_file.unlink()
# remove_log_file(str(Path.cwd() / "log.out"))
def clear_gpu_cache():
# clear the GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
XTTS_MODEL = None
def create_zip(folder_path, zip_name):
zip_path = os.path.join(tempfile.gettempdir(), f"{zip_name}.zip")
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder_path)
return zip_path
def get_model_zip(out_path):
ready_folder = os.path.join(out_path, "ready")
if os.path.exists(ready_folder):
return create_zip(ready_folder, "optimized_model")
return None
def get_dataset_zip(out_path):
dataset_folder = os.path.join(out_path, "dataset")
if os.path.exists(dataset_folder):
return create_zip(dataset_folder, "dataset")
return None
def load_model(xtts_checkpoint, xtts_config, xtts_vocab,xtts_speaker):
global XTTS_MODEL
clear_gpu_cache()
if not xtts_checkpoint or not xtts_config or not xtts_vocab:
return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
print("Loading XTTS model! ")
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab,speaker_file_path=xtts_speaker, use_deepspeed=False)
if torch.cuda.is_available():
XTTS_MODEL.cuda()
print("Model Loaded!")
return "Model Loaded!"
def run_tts0(selected_language, lang, tts_text, speaker_audio_file, temperature, length_penalty,repetition_penalty,top_k,top_p,sentence_split,use_config):
if XTTS_MODEL is None or not speaker_audio_file:
return "You need to run the previous step to load the model !!", None, None
#
selected_speaker = speaker_audio_file
selec_languaje = load_text_langs(selected_language)
# Construct the file path
speaker_audio_path = f"/tmp/Voice/{selec_languaje}/{selected_speaker}.mp3"
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_path, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
if use_config:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
length_penalty=XTTS_MODEL.config.length_penalty,
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
top_k=XTTS_MODEL.config.top_k,
top_p=XTTS_MODEL.config.top_p,
enable_text_splitting = True
)
else:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=temperature, # Add custom parameters here
length_penalty=length_penalty,
repetition_penalty=float(repetition_penalty),
top_k=top_k,
top_p=top_p,
enable_text_splitting = sentence_split
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
out_path = fp.name
torchaudio.save(out_path, out["wav"], 24000)
return "Speech generated !", out_path, speaker_audio_path
def run_tts(lang, tts_text, speaker_audio_file, temperature, length_penalty,repetition_penalty,top_k,top_p,sentence_split,use_config):
if XTTS_MODEL is None or not speaker_audio_file:
return "You need to run the previous step to load the model !!", None, None
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
if use_config:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
length_penalty=XTTS_MODEL.config.length_penalty,
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
top_k=XTTS_MODEL.config.top_k,
top_p=XTTS_MODEL.config.top_p,
enable_text_splitting = True
)
else:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=temperature, # Add custom parameters here
length_penalty=length_penalty,
repetition_penalty=float(repetition_penalty),
top_k=top_k,
top_p=top_p,
enable_text_splitting = sentence_split
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
out_path = fp.name
torchaudio.save(out_path, out["wav"], 24000)
return "Speech generated !", out_path, speaker_audio_file
# Diccionario de idiomas y sus c贸digos
leng_and_ids = {
"Select language": "es",
"Voices Legacy": "show_legacy",
"Arabic": "ar",
"Bulgarian": "bg",
"Chinese": "zh",
"Croatian": "hr",
"Czech": "cs",
"Danish": "da",
"Dutch": "nl",
"English-1": "en1",
"English-2": "en2",
"Finnish": "fi",
"French": "fr",
"German": "de",
"Greek": "el",
"Hindi": "hi",
"Hungarian": "hu",
"Indonesian": "id",
"Italian": "it",
"Japanese": "ja",
"Korean": "ko",
"Norwegian": "no",
"Polish": "pl",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
"Slovak": "sk",
"Spanish": "es",
"Swedish": "sv",
"Tamil": "ta",
"Turkish": "tr",
"Ukrainian": "uk",
"Vietnamese": "vi"
}
# Listas de nombres para cada idioma (Soluci贸n 2: Recomendada)
show_legacy = ['Adam', 'Alice', 'Antoni', 'Aria', 'Arnold', 'Bill', 'Brian', 'Callum', 'Charlie', 'Charlotte', 'Chris', 'Clyde', 'Daniel', 'Dave', 'David_Martin._1', 'Domi', 'Dorothy', 'Drew', 'Elli', 'Emily', 'Eric', 'Ethan', 'Fin', 'Freya', 'George', 'Gigi', 'Giovanni', 'Glinda', 'Grace', 'Harry', 'James', 'Jeremy', 'Jessica', 'Jessie', 'Joseph', 'Josh', 'Laura', 'Liam', 'Lily', 'Matilda', 'Michael', 'Mimi', 'Nicole', 'Patrick', 'Paul', 'Rachel', 'River', 'Roger', 'Sam', 'Sarah', 'Serena', 'Thomas', 'Will']
arabic_names = ['Amr', 'Anas', 'HMIDA', 'Hamid', 'Haytham', 'Haytham_-_Conversation', 'Jafar_-_Deep_Narrator', 'Mo_Wiseman', 'Mona', 'Mourad_Sami', 'Raed', 'Sana', 'Wahab_Arabic']
bulgarian_names = ['Elena', 'Julian']
chinese_names = ['Coco_Li', 'Karo_Yang', 'Liang', 'Martin_Li', 'Maya_-_Young__Calm', 'ShanShan_-_Young_Energetic_Female', 'Stacy_-_Sweet_and_Cute_Chinese', 'YT']
croatian_names = ['Ivan', 'Luka_-_Narration', 'Maja', 'Slobodan']
czech_names_names = ['Anet', 'Hana_-_CZ', 'Hanka_beta', 'Jan', 'Jan_-_kind__gentle', 'Jiri', 'Ond艡ej_鈥揰vyprav臎膷', 'Pawel_TV鈩笍_-_High_Quality_', 'Petr_Sovadina', 'Tony']
danish_names = ['Christian_-_Danish_calm_voice', 'Constantin_Birkedal', 'Mathias_-_Storyteller', 'Peter_-___Readings__Presentations', 'Sissel', 'Thomas_Hansen']
dutch_names = ['Arno_Drost', 'Bart', 'Daniel_van_der_Meer_', 'Jaimie_from_the_Netherlands_-_Dutch_Amsterdam_Voiceover_-_Young_Male_Age_30_', 'Richard', 'Serge_de_Beer_Pro1', 'Tijs']
finnish_names = ['Christoffer_Satu']
french_names = ['Adina_-_French_teenager', 'Adrien_Piret', 'Alexandre_Boutin_-_French_Canadian', 'Audiobooks_Lady', 'Audrey', 'Camille_Martin', 'Christophe_G茅radon_Belge', 'Christophe_M', 'Claire', 'Coco_-_French_-_for_E-learning_and_Tutorial', 'Corentin', 'Cyril_-_Narration__Audiobook', 'Darine_-_Narration', 'Dave_-_Pro_Narrative', 'David', 'Denis_Landrieu', 'Emilie_Lacroix', 'Eric', 'Franck_de_France', 'Fr茅d茅ric_-__French_Narration', 'Ga茅tan_L-Pro_French_Warm_Calm_Clear_Voice_Reader_conditions', 'Guillaume_-_French_voice_-_Narration_and_Voiceover', 'Guillaume_-_Narration', 'Haseeb_-_Canadian_French', 'H茅l猫ne', 'JaySoft', 'Jean_Petit_-_jeune', 'Jeanne_-_Professional_and_captivating_voice', 'Kevin_histoire_V2', 'Laurence_-_Class__Mature', 'Liam_-_Sharp__Pro', 'Louis_Boutin', 'Lucie', 'Lucien', 'Ludovic', 'L茅o_-_Quebec_French', 'L茅o_Latti', 'Mademoiselle_French_-_For_Conversational', 'Mademoiselle_French_-_for_Institutional_Video', 'Manuel_Formateur_-_Fran莽ais', 'Martin_Dupont_Aimable', 'Martin_Dupont_Intime', 'Martin_Dupont_Profond', 'Mat', 'Mathieu_-_French_voice_-_Narration', 'Maxime_-_French_Young_Male', 'Maxime_Lavaud_-_French_young_man', 'Maxime_Lavaud_-_French_young_man_', 'Michel', 'Miss_French_-_For_Audiobook', 'Miss_French_Papote', 'Miss_Radio', 'Nicolas_-_Narration', 'Nicolas_Petit', 'Nicolas_Petit_-_Deep_voice_narration_', 'Nicolas_animateur_', 'Olivier_Calm', 'Patrick_-_Qu茅bec_Canada', 'Peter_-_Engaging_friendly_young_adult_male_voice', 'Romain_-_Lecture', 'Sam_French', 'SkaraB', 'Sophie_-_Pro_Audiobook', 'S茅bastien_-_French_Male', 'Theo_-_Smart_warm_open', 'Ulys_-_Young__Energetic', 'Vincent_FR', 'Voix_Nicolas_Petit_ton_Animateur_Radio', 'Voix_grand_p猫re']
german_names = ['Aaron', 'Albert_-_Funny_Cartoon_Character', 'Aleks', 'Alessandro_Devigus', 'Alex_-__Professional_German_Male_Voiceover', 'Amadeus', 'Ana', 'Ana_-_Novel_Audiobook', 'Andi_Brewi_-_Moderator_advertising_spokesperson', 'Andreas_-_Clear_German', 'Andreas_-_Deep_German_Voice', 'Annika', 'Anton_Dark_Magic_-_Thriller_-_True_Crime', 'Antonia_Konstanz_-_German_Native', 'Apollo_-_Documentary__TV_Voice', 'Ava_-_youthful_and_expressive_German_female_voice', 'Bartholomeus_B枚sewicht_-_Grim_and_Gruesome', 'Ben', 'Ben_Hoffmann_-_German_Ads__Trailers', 'Carlos_-_der_Spanier', 'Carola_Ferstl_Nachrichten', 'Christian', 'Christian_Ehler', 'Christian_Kinderbuch', 'Clemens_Hartmann_-_The_Berlin_Voice', 'Clemens_Hartmann_2_-_for_Ads__Trailers', 'Clemens_Hartmann_3_-_The_Narrator', 'Cornelia_', 'Daniel_DaFraVe', 'Daniel_DaFraVe_Whisper._ASMR._Meditation._Relaxing', 'David_-_Serious_voice_for_narration_and_stories', 'Der_Beamte', 'Dimawalker_', 'Dimi', 'Dirk', 'Elias_-_Radio_Host__Radio_News_Presenter_Voice', 'Elias_-_Social_Media_Podcasts_Conversations__Discussions', 'Emilia_-_German_narrator', 'Fabian', 'Felix_-_Smooth_German_Chaos', 'Felix_-_Soft_Deep_German_Narration_Voice', 'Felix_Gebhardt_-_authentisch_und_ber眉hrend_Podcast_H枚rbuch_Radio', 'Finnegan_Fairytale_-_Exciting_Childrens_Stories', 'Flauschi', 'Frederick', 'Frederick_-_Calm_Meditation_Deutsch', 'Frederick_-_Calm_and_Soothing_Meditation', 'Frederick_-_Friendly__helpful_', 'Frederick_-_Old_Gnarly_Narrator', 'German_Daniel', 'German_Michael_-_Loud_Clear__Striking', 'German_Voice', 'Grandpa_Georg_-_Funny_and_Gruff', 'G眉nther_Goodnight_-_Relaxed_and_Slow', 'Hans_Kraft', 'Heidi_factual_Standard_German_-_with_Swiss_Accent', 'Helmut_Schwarz', 'Herr_Gruber', 'Horvath_aus_Wien', 'Isabell', 'Jan', 'Jean_Art', 'Jesper', 'Johannes_-_Documentary_film', 'Jonas', 'Juan_Schubert', 'Julia', 'Julian_-_German_Explainer_Voice', 'Julius', 'Kris_Klingenberg', 'Kurt_-_Calm', 'Lana_Weiss_-_Meditation', 'Lea', 'Lena_-_Cute_German_Voice', 'Leo_liest', 'Leo_liest_tief', 'Leon_Stern_-_Fiction__Fantasy_', 'Leonie', 'Lex_Mystery', 'Lorenz', 'Louisa_', 'Luisa', 'Lukas_Harmony', 'Manuel_-_Your_Narrator_and_Storyteller', 'Marc', 'Marc_Weber_-_Non-fiction_books_', 'Marcel__Male__Audiobook__Tutorial__Trainings_GERMAN', 'Marco_-_Gentle_German_ASMR_Narrator', 'Marcus_KvE_鈥揰German_Voice_Over', 'Marie_-_German_Frenchwoman', 'Marko_-_German_Male_Deep_Voice', 'Markus', 'Martin_History', 'Martin_Jung', 'Martin_R._Pro', 'Max_Mustermann_-_Ernst', 'Meine_Lesestimme', 'Michael', 'Mila', 'Nader', 'Narrator_Markus', 'Niander_Wallace_', 'Otto', 'Patrick_-_German_speaker', 'Peter_Hartlapp_-_Voiceactor_Werbesprecher_und_Moderator', 'Peter_Meta_Business_Twin', 'Petra_PeFraVe_Pro_', 'Petra_PeFraVe__-_Funny', 'Phil_-_Fantasy__Thriller', 'Philipp_-_Male_with_standard_accent', 'Prinz_Pricklig_-_Whispering_Sparkling_and_Crisp_', 'Rafi_Biber', 'Reeloverlay', 'Rob', 'Robby_-_Audio_books_Speeches__Stories', 'Robert_dein_freundlicher_Assistent', 'Robert_erklaert_mit_Betonung', 'Robert_hypnotisiert_entspannte_Meditation', 'Samer', 'Sammy_Zimmermanns', 'Sascha_Pro_', 'Sebastian_Thomas', 'Stefan_Rank_der_Erz盲hler_Radio-Moderator', 'Susi', 'Sympathische_Stimme', 'Thomas_-_The_pragmatist', 'Timo', 'Tom_-_Deep_German_Voice', 'Tom_Magic', 'Tommy_Studio_Voice_2', 'Torsten_-_Raspy_Charmer', 'Tristan_Medersburg_-_Trustworthy_Deepness', 'Vali_-_Young_man_with_a_bass-heavy_voice', 'Vincent_-_Factual', 'Willi_-_Professional_German_Narrator']
greek_names = ['Agapi', 'Fatsis_', 'Giassiranis_Dimitrios', 'Kyriakos', 'Niki_-_native_Greek_female_', 'Niki_2_-_native_Greek_female', 'Niki_3_-_native_Greek_female', 'Stefanos_-_Calm_youthful_and_casual', 'Takis_-_native_Greek_male']
hindi_names = ['Aaditya_Kapur_-_Calm_Conversational_Hindi_Voice', 'Aakash_Aryan_-_Conversational_Voice', 'Amit_Gupta', 'Anand_-_Storytelling_and_Narration_Hindi', 'Anoop', 'Ayesha_-_Energetic_Hindi_Voice', 'Bobby_', 'Danish_Khan_-_Expressive_Old_Voice', 'Devi_-_Clear_Hindi_pronunciation', 'Faiq_-_Standard_Hindi', 'God', 'Guru_-_Rich_Bass_Hindi_Voice', 'Ishika_Singh_-__Storytelling_and_Narration_Hindi', 'Janvi_-_Expressive_Indian_Voice_', 'Jitu', 'John_-_Confident_and_Deep', 'Kaaya_-_Gentle_Hindi_', 'Kanika_-_Relatable_Hindi_Voice', 'Krishna_-_Energetic_Hindi_Voice', 'Kunal_Agarwal', 'Leo_-_Energetic_Hindi_Voice_', 'Luv_-_Hindi_Storytelling_Voice', 'Manu_-_Smooth_Modulated_Voice', 'Monika_Sogam_-_Hindi_Modulated', 'Muskaan_-_Casual_Hindi_Voice', 'Natasha_-_Energetic_Hindi_Voice', 'Neel_-_Expressive_Narrator', 'Nikita_-_Youthful_Hindi_Voice', 'Nipunn_-_Deep_Hindi_voice', 'Niraj_-_Hindi_Narrator', 'P_K_Anil_-_Clear_Hindi', 'Parmeshwar_啶ぐ啶啶多啶掂ぐ', 'Parveen_-_Hindi', 'Pratima_-_Casual_Hindi_Conversational_Voice', 'Prem_-_Connectable_Hindi_Voice', 'Priya', 'Raju_-_Relatable_Hindi_Voice', 'Ranbir_Merchant_-_Deep_Engaging_Hindi_Voice', 'Ranga_-_Authoritative_and_Deep_Hindi_Voice', 'Reva_-_Familiar_Hindi_Voice', 'Riya_K._Rao_-_Hindi_Conversational_Voice', 'Ruhaan_-_Clean_Hindi_Narration_Voice', 'Saanu_-_Soft_and_Calm', 'Sachin_-_Deep_and_thoughtful', 'Saira_-_Young_Casual_Voice', 'Samads_Realistic_Voice', 'Shakuntala_-_Expressive_Indian_Voice', 'Shrey_-_Deep_Hindi_Voice', 'Sohaib_Jasra_', 'Sonu_Indian_Male', 'Suhaan_-_Delhi_Guy', 'Sweetie', 'Vihan_Ahuja_-_Friendly_Hindi_Voice', 'Yash_A_Malhotra_-_Warm__Friendly_Hindi_Voice', 'Zadok_-_Good_for_character']
hungarian_names = ['Magyar_F茅rfi_-_Hungarian_Male', 'Susanna_Rutkai']
indonesian_names = ['Abyasa', 'Andi', 'Andra', 'Bambang__', 'Bee_Ard_-_Clear_Dynamic_Voice', 'Blasto', 'Hendro_Atmoko', 'Jin', 'Mahaputra', 'Meraki_female_Indonesian_voice', 'Miz', 'Pramoedya_Chandra', 'Pratama', 'Putra', 'Suara_narasi', 'Tri_Nugraha_Ramadhani', 'Zephlyn']
italian_names = ['Aaron', 'Alessandro', 'Alessio_-_positive_and_professional', 'Andrea_Loco', 'Anna', 'Antonio_Farina_-_Italian_PRO_Talent_-_Audiobook_Narration', 'Carmelo_La_Rosa_-_Italian_Pro_Talent_e-learning_news_webinar_istitutional.', 'Chris_Basetta_-_Audio_Books', 'Chris_Basetta_-_Social_Media', 'Dante_-_Italian_30_years_old', 'Emanuel', 'Eray_Rio路Sae', 'Fabi', 'Francesco', 'Francesco_-_Narrative', 'Francesco_-_Premium', 'Gabriele', 'Germano_Carella', 'GianP_-_Edu_-_Clear__Upbeat', 'GianP_-_Narrative_Storytelling', 'GianP_-_News_Info_and_Documentary', 'GianP_-_Social_Media__Ads', 'Gianluigi_Toso', 'Giovanni_Rossi_-_giovane', 'Giulia_-_sweet_and_soothing', 'Gus_-_Deep_and_Pleasant', 'Kina_-_Cute_happy_girl', 'Leandro_', 'Linda_Fiore', 'Luca', 'Luca_Brasi_Gentile', 'Luca_Brasi_Intimo', 'Luca_Brasi_Profondo', 'Luna', 'Marcello_Lares_-_Soothing_Narrator', 'Marco', 'MarcoTrox_-_Italian_Pro_Voice_Actor_-_Storytelling_Audiobooks_Narration.', 'MarcoTrox_-_Italian_Professional_Voice_Talent', 'Marco_Pro', 'MrVibes', 'Nicola_Lorusso_-_Italian_Pro_-_Storytelling_Audiobooks_Narration.', 'Oceano_-_A_very_young_narrator', 'Pietro_-_Crazy_Character_Narrator', 'RenzoTech_', 'Stefano', 'Stefano_Becciolini_1']
japanese_names = ['Asahi_-_Japanese_male', 'Ena_', 'Hinata', 'Hiro_Satake', 'Ichiro', 'Ishibashi_-_Strong_Japanese_Male_Voice', 'Junichi', 'Ken', 'Ken_-_Japanese_male', 'Kozy_Male_Japanese_Narrative_Voice_-_Tokyo_Standard_Accent', 'Morioki', 'Otani', 'Sakura_Suzuki', 'Shoki']
korean_names = ['Anna_Kim', 'Bin', 'ChulSu', 'Do_Hyeon', 'Funny_Jackie_Lee', 'HYUK_', 'Hyuk', 'Hyun_Bin', 'Jaedong_Ahn', 'Jina', 'Jung_-_Narrative', 'KKC', 'KKC_-_Guided_Meditation__Narration', 'Kyungduk_Ko', 'Man_Bo', 'Min_ho']
norwegian_names = ['Johannes_-_Norwegian_-_Upbeat', 'Mia_Starset']
polish_names = ['Adam_-_Polish_narrator', 'Adygeusz', 'Aneta_-_Loud_and_confident_voice', 'Ave_Cezar', 'Bart', 'Bea', 'Damian_PL_', 'Daniel', 'Dawid_PL', 'Ignacius', 'James_-_Narrative__Story', 'Jerzy', 'Krzysztof_PL', 'Lena_Suzuki', 'Maciej', 'Maciek', 'Mark_-_Polish', 'Martin', 'MePolish', 'Mr_Lucas_', 'Oliver_Brown', 'Pawel_Pro_-_Polish', 'Piotrek_Pro', 'Pixi', 'Robert', 'Robert_Rob']
portuguese_names = ['Adriano_-_Narrador3', 'Adriano_-_Narrator', 'Adriano_-_Narrator2', 'Alcione', 'Ale_Garcia', 'Ana_-_Brazilian', 'Ana_Dias', 'Andreia_I.', 'Bia_-_Brazilian', 'Brazilian_Dudy', 'Conrado_Bueno', 'Daiane_Candido', 'Daniel_Dan', 'Davi', 'Dhyogo_Azevedo', 'Diego', 'Eddie_Barroso_-_Brazilian', 'Edna_E.', 'FMDAmbrosio', 'FRANCISCO_IA', 'Fabio_Filho', 'Flavio_Francisco_-_Narrative_-_Brazilian_Portuguese', 'Gabby', 'Gilson_Lima', 'Gustavo_Barros', 'Gustavo_Jannuzzi_', 'Gustavo_Sancho', 'Higor_Bourges', 'Hugo_Mendon莽a', 'Jo茫o_Pedro', 'Juliana_Barbieri', 'Keren_-_Young_Brazilian_Female', 'Klaus_-__Young_Brazilian_Professional_Narrator', 'Kuhcsal', 'Lax', 'Leonardo_Hamaral', 'Locu莽茫o_para_Propaganda', 'Luka', 'Marcelo_Costa_Brasileiro', 'Matheus_-_Energic_Young_Voice', 'Michele_-_Brazilian', 'Muhammad_Umm', 'Oliveir4_Music', 'Onildo_F._Rocha', 'Otto_de_La_Luna', 'Papai_Noel_', 'Rafael_Valente_-_Brazilian_Professional_Narrator', 'Rener', 'Roberto_Barbieri', 'Rodrigo_Rodrigues', 'Samuel_-_Jovem_Empreendedor', 'ScheilaSMTy', 'Slany', 'Thiago_Realista', 'Vagner_De_souza', 'Vinicius_Bergamo', 'Wesley_Bessa_', 'Weverton_', 'Will_-_Deep']
romanian_names = ['Andrei', 'Antonia', 'Apeiron', 'Ciprian_Pop', 'Corina_Ioana', 'Cristi_Romana', 'Cristina_Amza', 'Jora_Slobod', 'Liviu_Mihai', '_Bogdan_-_Advertising']
russian_names = ['Aleksandr_Petrov', 'Andrei_-_Calm_and_Friendly', 'Anna_-_Calm_and_pleasant_', 'Artem_K', 'Artemii_Levkoy', 'Dimitri', 'Dmitry', 'Felix_-_calm_friendly', 'Larisa_Actrisa', 'Marat', 'Mark_Rozenberg', 'Max_-_Clear__Professional', 'Nadia', 'Nikolay', 'Oleg_Krugliak_', 'Oleksandr_Trotsenko', 'Ranger3D.pro', 'Tyler_Soapen', 'Viktoriia_-_clear_resonant_young_female_voice']
slovak_names = ['Andrej']
spanish_names = ['AF', 'Alberto_Rodriguez', 'Alejandro_-_Mexican_male', 'Alejandro_Aragon', 'Alejandro_Ballesteros', 'Alejandro_Dur谩n', 'Alex_-_Happy_Upbeat_Joyful_Energetic', 'Alex_Comunicando', 'Andrea', 'Andrew_V.', 'Andromeda_Thunders', 'Angie_vendedora_Colombiana', 'Ani_Egea', 'Ani_Egea_-_Expressive', 'Antonio_LV', 'Antonio_ia', 'Apex_-_Fitness_-_Nutrition_-_Coach_-_Energetic_-_Professional', 'ArthisRap_Pro', 'Ashley_Travels-_American_English_Tourist_speaking_Spanish_', 'Bardo_Limon_-_Epic_Promotional_Voice', 'Bebe_Lunita_-_Bebe_hablando', 'Beto_-_Latin_American_Spanish_Argentina', 'Bruno_-_Suspense_-_Thrill_-_Horror_-_Tense', 'Br锚chet_Simon', 'CRISTINA_VOICE', 'Carles_Pujol', 'Carlos_-_Podcasting__News', 'Carmelo', 'Carmelo_Crespo', 'Carmelo_Crespo_-_Expressive', 'Carolina_-_Spanish_woman_-_es_ES', 'Christian_Avil茅s_-_documentales_e-learning_corporativos_y_Redes_Sociales', 'Claudia_Whispers-_Asmr_Spanish_Intimate', 'Cristi_Poot', 'Cristian_Medina', 'Damian_Valdez', 'Dan_Dan', 'Dante_-_Castilian_Spanish', 'Dany_-_Professional_narrator', 'David_Martin._1', 'David_Martin_2', 'Denilson', 'Didak_Le帽ero__Spanish_Spain', 'Diego_Aguado_-_Spanish_deep_voice', 'Diego_C谩rdenas', 'Diego_Gal谩n', 'Dominican_', 'Dosi_Espa帽ol', 'EDGARD', 'Eduardo_-_Advertising__Commercial_voice_in_Spanish', 'Eduardo_M._-_Mexican_Spanish', 'Eduardo_Rom谩n', 'Efrayn', 'Eleguar_-_Latin_American_Spanish', 'Eleguar_-__Deep_Latin_American_Spanish', 'Emiliano_Zamora', 'Emilio_Menal', 'Enrico', 'Enrique_M._Nieto', 'Enrique_Mondrag贸n', 'Erika_-_Raspy_and_Pleasant', 'Eva_Dorado', 'FantasyCraft_Studios', 'Fer', 'Fernanda_olea_1', 'Fernando', 'Fernando_Martinez', 'Firusho', 'Francisco', 'Frankie_San_Juan', 'Gabriela_-_Spanish_from_Mexico_', 'Gabriela_Gonzalez_', 'Gilfoy', 'Ginyin', 'Ginyin_2_-_Webpages_Narrative__Books', 'Grandma_Titina_-_70_year_old_woman', 'Guillermo_Braz谩lez', 'Guillermo_Braz谩lez_-_Dynamic__Cheerful', 'Haroldo_', 'Hern谩n_Cort茅s', 'Isabela_-_Spanish_Childrens_Book_Narrator', 'Jacson_Ander', 'Jaime_Fregoso_-_Professional_Annoucer', 'Jaime_Tu_Locutor_Online', 'Jarpa_Test_-_Francisco', 'Jav_-_Calm_clean_and_profound_voice', 'Javier_Espa帽a', 'Javier_Madrid', 'Javisanchez', 'JeiJo_', 'Jhenny_-_Warm_Fluid_and_Smooth', 'Jhenny_Antiques_-_Calm_Soft_and_Sweet', 'Jonathan', 'Jorge', 'Jorge_Gaviria_-_Powerful_and_impactful', 'Jorge_Mario_-_Spanish_to_read_books_and_narration', 'Jose_A._del_Rio', 'Jos茅_Borda', 'Jos茅_Borda_-_Deep', 'Jos茅_Borda_-_Expressive', 'Juan', 'Juan_Carlos', 'Juan_Manuel', 'Juan_Manuel_-_Conversational', 'Juan_Pablo', 'Kiko_Hdz', 'Knight_JAVIER-Calm_Gentle', 'Lalo', 'Leo_-_Energetic_Warm_Happy_Upbeat_Inviting_Optimistic', 'Leo_Kid_Spanish-_Character', 'Leonardo', 'Ligia_Elena', 'Ligia_Mendez', 'LoidaBurgos', 'Luis', 'Luis_Guary', 'Luis_R_Casiano', 'Luis_Vega', 'Lumina_-_Clara__Natural', 'Maicolangel', 'Malena_Tango', 'Mariluz_Parras', 'Mariluz_Parras_-_Expressive', 'Martin_Osborne_1', 'Martin_Osborne_2', 'Martin_Osborne_4', 'Martin_Osborne_5', 'Martin_Osborne_6', 'Martin_Osborne_7_', 'Mary', 'Mar铆a', 'Mauricio', 'Mauro_C', 'Maxi_Araya', 'Maxi_Argames', 'Memo_M_-Professional_Latin_American_Spanish', 'Mia_Garc铆a-_business_narrations_and_informative', 'Mia_Instructor-_Spanish_E_learning_corporate_Conversational_training', 'Miguel', 'Mikel_-_Adulto_idioma_espa帽ol', 'Miquel', 'Nina', 'Oliver_Podcasting_Refinada', 'OmarVoice', 'Omgpvoice', 'Omgpvoice_-_Expressive', 'Pablo_Vambe_AI_V2', 'Paloma_S.__-_Spanish_-_Conversational_Comforting_Compelling', 'Pilar_Corral', 'Rafael', 'Regina_Martin', 'Ricardo', 'Rodolfo_Rodriguez_', 'Rosa_-_Spanish_Calm_Old_Woman', 'Rosa_Zambrano_', 'Santiago', 'Santiago_-_calm', 'Sara_Martin_1', 'Sara_Martin_2', 'Sara_Martin_3', 'Screaming_George', 'Serena_AI', 'Sergio_Juvenal', 'Sofi', 'Soy_Luis_Cen', 'Tatiana_Martin', 'Tony_Villa', 'Valeria', 'Victor', 'V铆ctor_Hinojosa', 'Yinet_-Upbeat_Columbian_Woman', 'Yorman_Andres', 'Zabra_-_Commercial_Announcer', '_Medellin_-_Colombian_Voice', 'paco']
swedish_names = ['Adam_Composer_Stockholm', 'Jonas_calm__informative_Swedish_voice', 'Sanna_Hartfield_-_Sassy_Swedish_', 'Sanna_Hartfield_-_Swedish_Conversational', 'Sanna_Hartfield_-_Swedish_Narration']
tamil_names = ['Ashwin_-_Relatable_Tamil_Voice', 'Madsri_-_Friendly_Tamil_Voice', 'Madsri_-_Tamil_Narrator', 'Meera_-_Conversational_Tamil_Voice', 'Nila_-_Warm__Expressive_Tamil_Voice', 'Ramaa_鈥揰Energetic_Conversational_Tamil', 'Ramaa_鈥揰Energetic_Tamil_Narrator']
turkish_names = ['Adilcan_Demirel', 'Ahmed', 'Ahmet_Evlice', 'Ahmet_脟i莽ek', 'Arman_Y谋lmazkurt', 'Belma_-_Dynamic_Playful_Clear_Narrator', 'Burak_Yoglu', 'Burcu_Basyigit', 'Cagatay_A.', 'Calm_Turkish_AudioGuide', 'Cavit_Pancar_-_Epic_Powerful_Historical', 'Cem', 'Cicek_-_Joyful_Dynamic_Storyteller', 'Derin_Roman_-_Epic_Dark_Powerful', 'Doacast_', 'Doga', 'Eda_Atlas', 'Emre', 'Emre_G枚k莽e', 'Farshid', 'Fatih', 'Fatih_脟etinkaya', 'Furkan_Keser', 'Gokce', 'Gokce_lx', 'Gozde_Arikan', 'G枚n眉l_Filiz', 'Hakan_Turk', 'Halil_', 'Hulya', 'Hurrem_-_Confident_Turkish_Actress', 'Ipek_-_Professional_Confident_Narrator', 'Irem', 'Kamil', 'MUHAMMER_ARABACI', 'Mad_Scientist_-_For_All_Languages', 'Mahidevran_-_Playful_Clear_Powerful_Narrator', 'Mert', 'Mertkan_Erkan', 'Mustafa_Can', 'Onur_Can', 'Onur_Naci_Ozturkler_-_spunkram', 'Ramazan', 'Recep_Arki艧_', 'R谋dvan_Elitez', 'Se_-_Young_Male_Reading', 'Sedat', 'Sencer', 'Seyda_-_E臒lenceli_Anla艧谋labilir_Fun_Fluent_Clear', 'Sohbet_Adami_-_Natural_Chat_Friend', 'Sultan_-_Charming_Seductive_Narrator', 'Tarik', 'Tuba_Velidede', 'Tuncay_Saran', 'Valperga', 'Walter_BJ', 'Whispering_Irem', 'Yigit', 'Zafer_', 'bilgehan', '陌brahim_Halil_Acioglu', '陌brahim_Khan_陌pek']
ukrainian_names = ['Anton', 'Danylo_Fedirko', 'Dmytro_UA', 'Oleksii_Safin', 'Olena', 'Volodymyr_Pro']
vietnamese_names = ['Actor_Pham_Hung', 'Announcer_Van_Phuc', 'Ca_Dao', 'Kim_Tuy岷縩', 'Ly_Hai', 'MC_Duy_Minh', 'Mai', 'Nhung', 'S啤n', 'Trang', 'Trung_Caha', 'Tuan_TLU']
english1_names = ['2B_Impression', 'ANDREA_CUTE_female_voice', 'Aakash_Aryan_-_Conversational_English_Voice', 'Aaron_-_Monotone_tech_narrator', 'Aaron_-_trusted_and_engaged', 'Abandoned_school', 'Abigail_-_arrogant_and_snobbish', 'Abrogail_', 'Ada', 'Adam__-_Newscaster', 'Adina_-_Teen_Girl', 'Aditi', 'Adriano_-_44', 'Aerylla', 'Aiden_-_Happy_Video_Host', 'Ailema_-_calm__Soft', 'Akwasi_-_Young_Ghanaian_man', 'Al', 'Alan', 'Alec_-_Energetic_Confident_and_Charismatic', 'Alex', 'Alex_-_Vibrant_Engaging_and_Lively', 'Alex_the_Performer_-_Commercial_Warm_Inviting_Expressive', 'Alexander_-_Mature_and_confident', 'Alexi', 'Alexite', 'Ali_', 'Alice_-_calm_and_soft_narrator', 'Alisha_-_Soft_and_Engaging', 'Alton', 'Alyx_-_Vibrant_British_Male', 'Amada', 'Amanda_-_a_natural_narrator', 'Amar', 'Amelia', 'Amelia_-_young_and_soft', 'Amilia', 'Amina_-_regal', 'Amritanshu_Professional_voice', 'Amy_-_Clear_and_Concise', 'Amy_-_Smart_Teacher_Narration', 'Amy_-_Witty_College_Girl', 'Andre_LeDoux_-_Romantic_Fancy_Talking_male_', 'Andrew', 'Andrew_-_Old_slow_voice', 'Andrew_-_Smooth_audio_books', 'Andrew_Radio', 'Andy_Berg', 'Angie_-_Upbeat_Book_Narrator_Professional_Videos_Engaging_Conversations_Radio_News_Meditation', 'Anjali', 'Anjina', 'Anna_-_Modern', 'Annie', 'Anthony_-_emotive__expressive', 'Arabella', 'Arayah_-_Mature_and_Professional', 'Archer', 'Aria_-_Sexy_Female_Villain_Voice', 'Armando', 'Armando_realistic', 'Asarte', 'Ash_', 'Asher_Avery_Alex_-_Engaging_and_Real__Storyteller_and_Performer', 'Asmodia_-_earnest', 'Aspexia_-_Grand__Clear', 'Athena_-_Stern_serious_and_powerful', 'Attention_Grabbing_Male_Narrator', 'Aunt_Annie_-_calm_and_professional', 'Aurelia_-_High_Quality_Realistic_Princess_', 'Aurion_-_Wise_Narrator', 'Austin_-_Dramatic_Narration', 'Austin_Boy', 'Austin_the_Cowboy', 'Ava', 'Ayden', 'Ayesha_-_Energetic_Indian_Voice', 'Ayinde_-_young_British_Nigerian', 'Bailey_-_twenty-something_earnest_confident', 'Bails', 'Barry_Bob_Alone', 'Bateman_-_Deep_Masculine_and_Authoritative', 'Befutig_-_Steady_Robust__Engaging', 'Befutig_Safiza_Uj-alet_-_Resonant_Commanding__Authentic', 'Belinda_-_Curious_and_Soft', 'Bella-_sensual_allurin_beautiful', 'Bella_-_Direct_and_Understanding', 'Belle_-_Clear_Well-Modulated_Expressive', 'Ben', 'Ben_-_British_male_young', 'Benjamin_-_The_Frenchy_Guy', 'Benjamin_S_Powell', 'Benny', 'Bert', 'Beth_-_gentle_and_nurturing', 'Betsy_-_Wise_and_Thoughtful', 'Betty', 'Beyond_Average_Joe', 'Bhavna_-_Insightful_Storyteller', 'Bianca_-_City_girl_', 'Bill_-__A_deep_voice_narrator', 'Bill_Oxley_-_Clear_informative_mature_forthright_and_understandable', 'Blaire_Frost', 'Blkking407_', 'Bob_-_old_man', 'Bogdan_-_Soft_Male_Narration', 'Boi', 'Booney_-_calm_and_cute', 'Brandon_-_Young_Male_American_Voice_Over', 'Brandon_Cole', 'Brandon_VO_Artist_Clone', 'Brayden_-_Conversational_Older_Teen', 'Brenda', 'Brenda_-_Raspy_female_', 'Bria_-_Young_and_Soft', 'Brittney_-_Male_Child_-_Youthful_Raspy_Cute__Excitable_', 'Brittney_-_Social_Media_Voice_-_Fun_Youthful__Informative', 'Brody_-_Serious', 'Broom', 'Bruce_-_vibrant_and_baritone', 'Bryan', 'Bryn_-_Calm_and_Expressive', 'Bud', 'Cal_-_confident_professor', 'Calliope_-_ancient_muse', 'Camelia', 'Cara_-_Expressive_and_Direct', 'Carl_-_Big_Voice', 'Caroline_-_clear_and_confident', 'Carter_-_Caring_and_Rational_British_Male', 'Cassandra', 'Cassandra_-_Confident_and_Vibrant', 'Cassia', 'Catherine_-_Professional_and_Direct', 'Cecile_-_Confident_and_Strict', 'Charlie_-_Posh_and_Royal', 'Charlotte_-_precise', 'Chazza_Hypno', 'Chechi_for_first_video', 'Chelsea_Boddie', 'Chinmay_-_Calm_Energetic__Relatable_', 'Chloe_-_sharp', 'Chris_-_irritable_boss', 'Chris_C_-_Mid_30s_-_Podcast_Reviewer_good_for_shorts', 'Chris___Young_and_Inspired', 'Chrissy_-_Millenial_Female', 'Christian_Rivera', 'Christina_-_Trained_on_over_900_characters_with_emotional_dialogue', 'Christopher_', 'Christopher_-_friendly_guy_next_door', 'Chrisva', 'Ciro_-_real_intense_twentyish', 'Clara', 'Claw_Benn', 'Cody_-_Energetic_Upbeat_Educator', 'Cody_McAvoy', 'Cole_-_Gritty-Rough-Strong', 'Cooper', 'Cornelis', 'Creator', 'Cristiano', 'Crystal', 'Cyrus', 'Dan', 'Dana', 'Danbee', 'Daniel', 'Daniel_-_American_Game_Show_Host', 'Daniel_-_expressive_and_wise', 'Danny_-_highschool_jockish', 'Daphne_-_alluring_goth', 'Dara_-_loud_and_Intense_', 'Darwin_-_Rich_Mature_Voice', 'Daryl', 'Dath_Ilan', 'David', 'David_-_British_Storyteller', 'David_-_Deep_British', 'David_Bent', 'David_Castlemore_-_Newsreader_and_Educator', 'David_DeWitt', 'David_Eclipse', 'David_Esposito', 'David_Hertel', 'Dean_-_Goody_Two_Shoes', 'Deb_-_emotive_and_expressive', 'Deja', 'DellaRayne', 'DellaRayne_-_Smooth_and_Assertive', 'Demon_Monster', 'Derrick_-_melancholy', 'Desdemona_-_sassy', 'Desmond_-_clear_sincere_angst', 'Dezzy_-_Young_and_Soft', 'Dhyogo_azevedo', 'Diana_-_Meditative_Calm', 'Donny_-_Real_New_Yorker', 'Donny_-_very_deep', 'DrRenetta_Weaver', 'Dr_Lovejoy_-_Pro_Whisper_ASMR_', 'Drake__Warm_Canadian_English', 'Drew', 'Drew_-_Deep_Soothing_Guided_Meditation', 'Duke', 'Durgesh', 'Eamon_-_old_lecturer', 'Ed_Holderness', 'Edward', 'Egbert_-_upbeat_meditations', 'Elisa', 'Elisabeth_-_meditative', 'Elizabeth', 'Elizabeth_-_Wise_and_wistful', 'Elizabeth_-_calm_commanding_classic', 'Ella_-_Old_And_Deep_', 'Ellie', 'Emily_-_Australian_Female', 'Emily_-_relaxed_and_conversational', 'Emily_-_sweet', 'Emma', 'Emma_', 'Emma_-_A_brilliant_young_magician', 'Emma_-_sharp', 'Emma_Taylor', 'Emmeline_-_a_young_clear_and_confident', 'Epiktet_Philosoph_', 'Erdem_-_Educational_and_Instructional', 'Erika', 'Erin_-_Meditation_Guide', 'Ethan', 'Ethan_-_expressive_wise', 'Eustis_', 'Evan_-_showbiz_excited_happy', 'Eve_-_young_Australian_girl', 'Ezreal', 'Ezreal_-_energetic', 'Faith', 'Feeven', 'Female_Romance_Novel_', 'Foxy_-_Futuristic_Robotic_Personal_AGI', 'Francesca', 'Frank', 'Frank-_scary_stories', 'Frank_Johnson', 'Fucia_-_Youthful_and_Confident', 'Gabriella_-_deep', 'Garrett_Wasny', 'Gault_-_Youngish_excitable_high-strung.', 'General_Joe_-_WWII_Narrator', 'George', 'George_-_Serious_and_Experienced', 'Gerhard_Bakker', 'Gertrude_-_Childrens_Narrator', 'Gijs', 'Gladys', 'Goddess_Freyja_-_A_Mysterious__Magical_Muse', 'Graham_-_Old_and_Wise', 'Greg_Murphy', 'Gregoria', 'Gruhastha_-_Energetic_Enthusiastic__Articulate', 'Guy', 'Hakim_-_Audiobook_English__Arabic_Gulf_Accent', 'Halbert', 'Halley_McClure', 'Hallie_-_soft-spoken_and_subtle', 'Hallie_-_youthful_girl_voice', 'Hamlin_-_Deep_and_Booming', 'Hannah___Confident_Teacher', 'Hardcore_Henry_-_Intense_Storyteller', 'Harold', 'Harry_-_Proper_and_Academic', 'Harry___Sad_Emotional_Reck_', 'Harvey_-_Knowledgeful_Upfront', 'Haven_Sands', 'Helena_-_British_female_gentle_and_smart', 'Hemaka', 'Herbie_-_Lisp_and_whistle_S_sounds', 'Hermes_-_frank_abrupt_messenger', 'Hobbs_-_Casual_Narration', 'Horace_-_intense_deep_elder', 'Huckleberry_-_Southern_Charm', 'Hyde', 'Ian', 'Indian', 'Ingmar_-_Intimately_Mysterious', 'Investigator_Jane', 'Iomedae', 'Iris', 'Isabel_-_emotional__lisp', 'Isabella_', 'Isla_-_Strong_British_accent', 'Isla_Reid', 'Ivan_the_Mighty', 'Ivy_-_Free_Spirit', 'J._Thorn', 'J._Tyson', 'Jack', 'Jack-_Raspy__deep', 'Jacme', 'Jade', 'Jakobi_-_Emotive_and_Intriguing', 'James_-_Deep_', 'James_-_Deep_and_Booming', 'James_-_cool_and_expressive', 'James_-_deep_and_to_the_point', 'James_Fitzgerald', 'Jami_-_Mature_and_Clear', 'Jannice', 'Jason', 'Jason_Jordan', 'Jason_Pike', 'Jasper_-_androgynous_and_rebellious', 'Jasper_-_erudite_and_inquiring', 'Jeff', 'Jeff_-_Australian_Male', 'Jeff_-_Smooth_and_Confidant', 'Jennifer_-_expressive_and_cheerful_narrator', 'Jeremy_-_meditative', 'Jeremy_Clarkson', 'Jeremy_Smith', 'Jerry', 'Jerry_-_Energetic_and_Upbeat', 'Jessica_Anne_Bogart_-_Conversations', 'Je偶', 'Jim', 'JimBob_', 'Joan', 'Jodie_-_Assertive_and_Intelligent', 'Joe_-_American_Male_Narrator', 'Joe_-_professional_British_male_voiceover', 'Joe_02', 'Joey_Reeve', 'John', 'John_-_Deep', 'John_-_Guided_Meditation__Narration', 'John_-_Ultra_Brutal_Man', 'John_Beamer', 'John_Doe_Gentle', 'John_Domus_Cruo_-_Serious', 'John_Fernandes_-_Energetic__Friendly', 'Johnny_-_Upbeat_Professional_American_Male', 'Johnny_Boy_-_Action_Movie_Narrator', 'Johnny_Kid__-_Serious', 'Johnson_-_American_Male_voice_', 'Jones_-_Articulate_Gruff_Raspy', 'Jordan', 'Jordan_-_Warm_Narrator', 'Josh', 'Josh_-_Quiet_Person', 'Josh_T.', 'Joshua_-_Authoritative_Warm_and_Articulate', 'Joshua_-_Young_Soft_Warm_Male_Voice', 'Judy_-_Aged_and_Confident_Elder', 'Julie_-_expressive_and_energetic_romance_narrator', 'Justin_Time_-_eLearning_Narration', 'Justine_-_Expressive_Teen_Boy', 'Kade_Murdock_2.0', 'Kala', 'Kallen', 'Karen', 'Karma_-_Professional_and_Thoughtful', 'Kasi', 'Kathleen_Julie_-_alto_serious_articulate_focused_and_direct', 'Katy_-_sassy_teen', 'Kayla_-_Nurturing_and_Caring', 'Kelli-_Young_Mature_Southern', 'Kelly', 'Kelly_-_clear_teen_voice', 'Kenneth_-_strange_eccentric_old_gentleman', 'Kenny_-_Volume_2', 'Kevin', 'Khaled_', 'Khushi_-_New_Indian_Voice', 'Kieran_-_newsreader_male', 'Kik', 'Kim_-_Swedish_accent', 'Kim_Selch_-_Pro_Studio_Recording', 'King_Chuku', 'Kingsley_-_dapper_and_deep_narrator', 'Kirsten_-_Elegant_Knowledgeable_and_Reassuring', 'Kirt', 'Kitten_Kaley_Rose', 'Kiwi_-_Holistic_Educator', 'Kristopher_-_Gentle_ASMR_', 'Kuk', 'Kurrayah_-_young_and_friendly', 'Kuthon', 'Kwame', 'Kyana_Cook', 'LIAM_DALE', 'Lalitha_J_-_Tamil_Old_Woman', 'Lamar_Lincoln-_Black_Male', 'Latisha', 'Laurance', 'Lawrence_Mayles', 'Lee__Middle-Aged_Australian_Male', 'Leif_-_husky_male', 'Lena_-_crispt_and_confident', 'Leonardo_', 'Lerato', 'Liam', 'Liam_', 'Lila_-_Intelligent_and_emotive', 'Lily', 'Linus_-_A_young_American_tech_video_narrator', 'Lisa___Stern_and_Assertive_', 'LiveCat', 'LiveChi_', 'Liz', 'Lloyd', 'Lucas_-_motivational_speaker', 'Ludo_-_Storyteller_-_Your_epic_story_narrator', 'Luis_Gabriel', 'Lukas', 'Luna_-_Well_rounded_insightful_charismatic', 'Lyle', 'MANSHI', 'Magnolia_-_Mature_and_Wellspoken', 'Magpie', 'Marc_--_Smart_Soothing_Man', 'Marco-_hot_male_voice', 'Margot_', 'Mariam', 'Marianne_-_Narrative_Friendly_British_', 'Maribeth_-_A_Southern_Sweetheart_', 'Marie_KC', 'Marilyn_-_confident', 'Marissa_-_Friendly_and_Sociable', 'Marissa_from_ElevenLabs', 'Marjorie_', 'Mark', 'Mark_-_Very_Deep_Confident_Professional', 'Mark_-_Young_and_Calm_', 'Mark_-_clear_and_professional_newscaster', 'Mark_-_confident', 'Mark_-_raspy', 'Markus_-_Mature_and_Chill', 'Marshal_-_Dandy_Brit', 'Marshal_-_Toon_Character', 'Marta_-_Officious', 'Matt_Landon_', 'Matt_Rogo', 'Matt_Washer', 'Matthew_-_American_Male_Narrator', 'Matthew_-_Friendly_Clear_and_Perfect_for_Educational_Content', 'Matthew_MacGyver', 'Max_-_YouTube_Professional', 'Melina_CTC', 'Melissa_-_Female_Soothing_Narrator', 'Melville__Euro-accented_narrator.', 'Melvin_-_soothing_and_gentle', 'Mia', 'Mia_-_confident_and_annoyed', 'Mia_Chou', 'Michael', 'Michael_Anthony', 'Michelle_-_Old_and_Daring', 'Mike', 'Milan_Diekstra', 'Milean_-_bassy_with_plosives', 'Miller', 'Milo_-_Casual_Chill_Relatable_Young_Male', 'Mina', 'Miriam_-_Casual_and_Wry', 'Miss_Brittany_Andrews', 'Mkves_-_Calm_', 'Molly', 'Monika_Sogam', 'Mono', 'Morgan', 'Motivational_Coach_-_Leader', 'Mr._P_-_the_fun_guy', 'Mr_Novella_Main_Voice_-_Kobe_Black_British_Male_Young', 'Mun_W', 'My_Fortress', 'Nakiso', 'Nana-chan', 'Narender_Sharma', 'Narrador-34', 'Nata_Professional', 'Natasha_', 'Natasha_-_Sensual_Hypnosis', 'Nathaniel_C._-_Deep_Rich_Mature_British_voice', 'Naty_Heals_voice', 'Neal_-_Perfect_for_documentaries', 'Neil_-_cheerful_upbeat_youth', 'Nellie_-_soft', 'Newton', 'Niamh', 'Nichalia_Schwartz', 'Nick_Colter', 'Nicki', 'Nigel_-_Mysterious_Intriguing', 'Niladri_Mahapatra', 'Nina_-_nerdy', 'Nipunn_-_deep_captivating', 'Noah_-_scary_story_voice', 'Nora_', 'Nova_-_Wise_and_Tranquil_', 'Old_Joshua', 'Old_man_with_a_soft_voice', 'Olivia', 'Omeo', 'Oscar_-_Older_Narrative_Epic', 'Osiris_-_Deep_and_commanding_rumble_', 'Oswald_-_intelligent_professor', 'Pace_-_Deep_Menacing_and_Raspy', 'Page', 'Paladin', 'Parki_-_expressive_and_loud_elder', 'Paul_Henry_Smith_-_gentle_patient_clear', 'Paul_J._-_Calm_and_soothing_', 'Paula_Moon_-__Sleepy-time_true_crime_vocal', 'Paxti_-_Young_and_Earnest', 'Penelope_-_relaxed_and_breathy', 'Penfist_-_Military_Broadcaster', 'Penny_-_sweet_story_teller', 'Peter_-_Eastern_European_English', 'Peter_-_Hungarian_accent', 'Phil_-_Author_Non-fiction', 'Phillip', 'Phoebe', 'Pixy', 'Planty_-_raspy_voice', 'Prakash', 'Priya_-_Beautiful_and_melodic_Indian_accent', 'Priyam_-_Deep_Indian_Voice', 'Quasi-Jude-Lw', 'Rabih_Rizk', 'Rainbow', 'Raj', 'Raja_Babu', 'Ran', 'Rasper', 'Raven_Nightshade', 'Raven_Reed', 'Ray_-_Male_Soothing_Narrator', 'Raymond_Baxter', 'Raymond_Elliott', 'ReadingSam', 'Recvoice', 'RedGlassesVoiceovers', 'Remus_-_Fantasy_Professor', 'Rex_-_Throaty_and_World_Weary', 'Richard_-_enthusiastic_young_male', 'Richard_Yu', 'Ricky_The_K', 'Riley_-_loud_and_intense', 'Rinoa_-_Middle_Aged_Lady', 'Robert', 'Robert_-_American_standard_broadcaster', 'Robert_-_Business_Book_Narrator', 'Ronald_Wang', 'Rosalind_-_Classy_British_Actress', 'Rose', 'Rowan_-_gruff_and_raspy', 'Rufus', 'Rupert___Strong_British', 'Russel-_clear_realistic_pleasant', 'Russell', 'Russo_-_Dramatic_Australian_TV', 'Ryan', 'Ryan_-_Calm_Masculine_Teenager', 'Ryan_-_Dynamic_', 'Ryan_-_rough', 'Ryder_-_cool_and_balanced', 'SAVVAS', 'Sahand_RZ', 'Sally_Ford', 'Sam', 'Sam_-_English_Storyteller', 'Samantha', 'Sandy', 'Sanjana_', 'Sara_Jay', 'Sarah', 'Sarah_Lawson', 'Sash', 'Sassy_Aerisita', 'Satyam_1', 'Scar', 'Scott_-_Mature_and_Deep', 'Scott_-_Young_male_Canadian_voice', 'Scott_-_drill_instructor', 'Sean', 'Sean_-_deliberate_low_voice_authoritative_narration', 'Sean_Michael', 'Security', 'Serenity', 'Sexy_American_Female_voice', 'Se谩n', 'Shannon', 'Shannon_-_High_Quality_American_Male_Voice', 'Shanny_-_Soothing_Calm_American_Woman', 'Shelley_-_Clear_and_confident_British_female', 'Sheriff_Ben_-_Deep_Gruff_Authoritative', 'Shianne_-_Young_and_Confident', 'Shiv_-_Mature_Deep_Voice', 'Shoobu_-_Old_British_Man', 'Shot_List_voice_Girl', 'Sieu_Muoi', 'Sigrid_-_solemn_raspy_wise', 'Silas_-_stern_british_male', 'Silvia_-_upbeat_british_lady', 'Simeon', 'Simon_J_Kidson', 'Sina_-_Your_Narrator', 'SirEden_', 'Smart_Sara', 'Smarty_Pants_Amy', 'Smokey_McSmoker_-_Deep_and_Motivational', 'SocraGPTs', 'Sofy', 'Sophia', 'Sophia_Florence', 'Southern_Ann', 'Stan', 'Starry', 'Stella_-_Calm', 'Stephanie_P_-_Casual_feminine_great_for_storytelling', 'Stephen_-_Calm_British_Narrator_', 'Steve_Maughan', 'Steven_-_Calm_British_Deep_Soothing', 'Steven_-_Vibrant_Resonant_and_Inspiring', 'Stuart', 'Subirachs', 'Subu', 'Sully', 'Susan', 'Swara_-_Young__Calm_Voice', 'Tamara', 'Tanya-_Upbeat_and_Expressive', 'Tara', 'Tarini_-_Expressive__Cheerful_Narrator', 'Tarnish', 'Taro-_Young_Japanese_Accented_Guy', 'Tatsuya_Suzuki', 'Technical_Narrator_-_Precise_Knowledgeable_Engaging', 'Technical_Southerner', 'Temos_Sevandivasen_-_Resolute_Philosophical_Empathetic', 'Test_Aaron_2', 'Test_Plumb_2', 'Thaddeus_-_ancient_historian', 'Theodor_-_deep_american', 'Theodore-Old_Man__Deep_Husky_Voice', 'Theresa', 'Thomas', 'Tiffany_Kim_-_versatile_and_engaged_narrator', 'TikTok_Male_Voice', 'Todd_-_Universal_Crossover', 'Tom', 'Tom_-_trailer_narrator', 'Tommy_-_Reedy_Annoyed', 'Tony_-_Middle-aged_with_American_accent_', 'Trent_-_quirky', 'Tulipe', 'Twilight_Zone_Guy', 'Tyler_Kurk', 'Tyrone_-_Deep_Strong_Masculine_Narrator', 'Tyson', 'Upbeat_Teacher', 'Vee_-_Soft_Spoken_British_Male', 'Vicki_', 'Victoria_Queen_of_England', 'Vieux', 'Vivian', 'Vivie_2_Upbeat', 'W._Sillyman_Oxley', 'Wade_-_powerful', 'Walker', 'Wally_-_Warm_Deep_Masculine', 'Walter_-_Intelligent_and_Resolute', 'Wanda_-_calm_female', 'Wesley_-_nervous_cowardly_fellow', 'Will_', 'William', 'Winston_-_Distinguished_Erudite_and_Genteel', 'Winston__Authoritative_British_Man', 'Yee', 'Yoel', 'Young_brit', 'Yousef_-_Passionate_Sympathetic', 'Zara_-_understanding_friend', 'Zashikix', 'Zee_-_Childish', 'Zeus_-_arrogant', 'Zeus_Epic', 'Zoe_-_emphatic_and_pleasant', 'Zon-Kuthon', 'Zuri_-_New_Yorker', '_Luca_-_ calm_soothing_steady', '_Martha_-_Narration', '_Vicky_-_Posh_Voice_With_A_Lipse_', 'adriano_-_41', 'emily_', 'harry_deep_and_warm', 'madeline', 'neuris', 'sebastian_']
english2_names = ['19keys', 'ADAM', 'ADAM_v2', 'ALESSANDRO_DEEP', 'ATAKAN_ARISOY', 'A_Top_Narrator_VO_PRO', 'Aaditya_Kapur_-_Calm_Conversational_Voice', 'Aarav_-_Deep_and_wise_Indian', 'Aaron_-_Narration_Voice__A_Voice_thats_One_in_a_Million_NOT_like_a_Million_Others', 'Aaron_Davis_Emerson', 'Aaron_Sage_-_Friendly__Conversational_', 'Abigail', 'Adam_-_Calm_Smart', 'Adam_-_deep_voice_Australian', 'Adam_-_low_rough_and_full', 'Adam_-_old_and_knowing', 'Addie_-_Podcast_Princess', 'Adeline', 'Adi', 'Adriano_-_narrador_37', 'Aelar', 'Agatha', 'Agent_L', 'Ajay', 'Akua', 'Albert_-_Pleasant_deep_voice', 'Albert_-_Strong_German_Accent_', 'Albert_-_deep_slurred_meditations', 'Albert_Banoy', 'Alden_-_Resolute_Gravitas', 'Alex_-_Australian_Male_-_Casual_-_Melbourne_City', 'Alex_-_Business_Book_Narrator', 'Alex_-_Young_American_Male', 'Alex_-_expressive_narrator', 'Alex_Ozwyn', 'Alex_Wright', 'Alexander_-_Deep_Calm_and_Authoritative', 'Alexis_-_chic_and_cosmopolitan', 'Alfie', 'Ali', 'Alice_-_calm__composed', 'Alice_-_young_and_confident', 'Alita', 'Allison_-_millennial', 'Aly_-_Serious_and_Strict', 'Amaniri_-_British_Stalwart_Lass', 'Amelia_-_haughty', 'Amrut_Deshmukh_-_Booklet_Guy', 'Amy_-_Spunky_Cartoon_Girl_Voice', 'Amy_-_mean', 'Ana', 'Ana-Rita', 'Andrea_Wolff_-_clear_youthful_evenly_paced_', 'Andrew_-_tech_wizard', 'Andrews', 'Android_X.Y._Z._-_AI_Robot_of_the_Future', 'Angel', 'Ann_the_neighbor_', 'Anna_-_Cute_Calming_Narrator', 'Anne_Marie', 'Anthony10', 'Antoine', 'Antonio', 'Antonio_-_English_with_Subtle_Italian_Accent', 'Anup_Chugh_', 'Anushri_-_Natural_Young_Indian_Voice', 'Archie_-_English_teen_youth', 'Ardian', 'Ariah', 'Aristocrat', 'Arjun', 'Arnold', 'Arthur', 'Arthur_-_Energetic_American_Male_Narrator', 'Arthur_-_Geeky_Masculine_Deep', 'Arthur_-_Royal_Narrator', 'Arthur_the_anchorman', 'Arun', 'Ash', 'Asher_-_Confident_Aristocratic_Male', 'Ashley_American_Mom', 'Astrid', 'Astro_-_Audiobook_Excellence', 'Athena_-_corporate_supervisor', 'Aurelius_-_Calming_Deep_Serious_', 'Ava_Said_2', 'B._Hardscrabble_Oxley', 'Baron_Theatricus_-_Dramatic_Elocution', 'Beatrice_-_energetic_older_female_voice', 'Bedlam', 'Belinda', 'Ben_-_Masculine_Authorative', 'Ben_-_Scary_Stories', 'Benjamin', 'Benjamin_-_Deep_Warm_Calming', 'Benjamin_-_strong_and_confident', 'Bert_-_Mystical__Whimsical', 'Bill_Oxley_', 'Biquette_-_sad_and_resigned', 'Blake_-_bassy_and_gruff', 'Bob__-_Young_Deep-voice', 'Brian', 'Brian_-_Broadcast_News_Anchor', 'Brian_-_deep_narrator', 'Brian_Overturf', 'Brittany', 'Brittney', 'Brittney_-_Young_Peppy_Female_-_Social_Media_How_Tos_Explainers', 'Brody_-_Cool_Deep_Chilled', 'Bruce_-_Deep_Warm_Strong', 'Bruce_Actor', 'Brucifer', 'Brutus_-_Profound_Slow-paced_Inspiring', 'Bryan-Deep_Narration', 'Bryan_-_Narration', 'Bryan_-_Professional_Narrator', 'Bubba_Marshal', 'Burak_-_accented_storyteller', 'CAMILO_-_AMERICAN_VOICE_NARRATOR', 'CJ_Murph', 'CS_New_', 'Cal_-_Deep_and_Calming', 'Caleb', 'Cali_-_American_Female_voice_for_Promos', 'Cally_-_Young_and_Sweet', 'Calvin_', 'Cameron_-_deep_and_emotive', 'Can', 'Capt_Lynch_-_Sophisticated_Wise_Calm', 'Carlo_', 'Carlos_', 'CarterSutra', 'Carters_Edge', 'Casey_-_Clean_crisp_female_voice', 'Cecil_-_Profound_and_Precise', 'Cecilia', 'Charles_-_Deep_Hoarseness_Voice', 'Charlie_-_gentle_knowledgeable_old_voice___', 'Charlotte_-_sweet', 'Charmion_-_Soft_and_husky', 'Chloe_-_Girl_Next_Door', 'Chris_-_British_Friendly_Advertising_', 'Christian', 'Christina-_friendly_and_energetic', 'Christine_-_calm_teacher', 'Christopher', 'Christopher_-_Immersive', 'Christopher_-_scientific_mind', 'Chuck', 'Chuck_-_True_Crime', 'Claire', 'Clarice_-_Kind_and_Trustworthy', 'Clover_-_Calm_and_Collected', 'Cody_-_Authoritative__Deep_Motivational_Narration', 'Connor', 'Conny_-_Old_and_Stubborn', 'Consuelo', 'Conversational_Joe_-_A_chatty_casual_voice_British_RP_male', 'Courtney', 'Courtney_-_Soothing_and_Calm', 'Crime_Channel', 'Crystal_-_Pleasant_sultry_Voice_for_Audio_Experience', 'DJ_Marathon', 'DR_Dean_British', 'Dakota_H', 'Dalia_', 'Damon_-_Deep_and_Strong', 'Dan_-_Young_British_friendly_voice', 'Daniel_Lappisto', 'Daniel_R', 'Danielle_-_Canadian_Narrator', 'Dave', 'Dave_-_Dry_Quirky_Wit', 'David_-_American_Narrator', 'David_-_Epic_Movie_Trailer_', 'David_-_Gentle_Engaging_Soothing', 'David_-_Mature_Engaging_Male_Voice_American_accent', 'David_-_knowledgeable_old_soul_', 'Davy_-_Deep_Pirate_Voice', 'Dean_-_British_RP_Warm_and_Friendly', 'Dean_Jones', 'Delegate_-_Bright_and_Airy', 'Demeter_-_expressive_and_sincere_mother', 'Denis_-_Authoritative_and_Deep_Narrator', 'Denzel', 'Denzel_-_Casual_Narration_', 'Desdemona_-_balanced', 'Dez', 'Dispater_-_Refined_Strong__Authoritative_', 'Divija_-_A_female_voice_young_and_vibrant', 'Djali_Vesela', 'Don_-_Deep_Warm_Realistic', 'Don_Kim', 'Donald_-_American_70_years_old', 'Dorian_-_fast_paced_mediations', 'Dragonia_-_Dragon_Rider', 'Drake', 'Duncan_--_the_Melancholy_Intellectual_', 'Dying_story_teller', 'Ebony', 'Ebsa-_Realistic_Deep_male_voice', 'Ed_-_sweet_and_soft', 'Eddy', 'Edgar_-_nerdy', 'Edmund', 'Edris_-_deep_and_powerful', 'Edward-_muffled_and_distorted', 'Elaine_-_Sweet_and_Lively', 'Elaine_-_emotionally_versatile_narrator', 'Ele_-_Elegant_Youthful', 'Eli_-_American_voice_for_promos_and_explainers', 'Elijah_-_Narrative_Reader', 'Ella_', 'Ella_-_soft_and_sweet', 'Ellie_-_Tender_young_woman', 'Emily', 'Emily__-_pleasant_teen_voice', 'Emma_watson', 'Emms', 'Emre', 'Erecura_-_Walm_and_Nurturing', 'Erin', 'Erin_', 'Eris_-_strong', 'Eugene_-_nerd_and_geek', 'Evan_-_deep_narrator_voice', 'Evan_Byers', 'Evy_-_endearing_textured', 'Extraordinary_Joe_', 'Faheem_Ahmed_', 'Felicity_-_young_and_well-spoken', 'Finn_-_Serious_and_Sincere', 'Florence_-_Mature_Educated', 'Fowler_-_scary_and_authoratative', 'Franklin', 'Frederick_Surrey', 'Gandalf_', 'Garretts_Groove', 'Gemma_-_Refined_Witty_and_Warm', 'Gemma_-_Young_Australian_Female', 'Gene_-_informative_and_trustworthy', 'German_Petra_-_English_with_hard_accent', 'Giovanni', 'Godfrey_a_National_Treasure', 'Godot_-_Wise_and_Serene', 'Gordon_', 'Grace', 'GrandMaester_Game_of_Thrones', 'Grandma_Margaret_-_Storybook_Narrator', 'Grandpa_Slow_Reading', 'Grandpa_Spuds_Oxley', 'Gravitas_-_The_deep_narrator_voice', 'Gregory_-_British_Nature_Narrator', 'Gwen_-_Calm_and_Pleasant', 'Hades_-_grim_gravitas', 'Hamza', 'Hannah_-_assertive__refined', 'Hannah_-_soft-spoken', 'Harrison_-_Deep_and_Cinematic', 'Harrison_Gale_鈥揰The_Velvet_Voice__deep_resonant_powerful_smooth_rich_storytelling_narrator', 'Haseeb_-_Canadian_Narration', 'Haven_Glass', 'Hector', 'Hector_-_Deep_Narrative', 'Hephaestus_-_steady_and_patient_teacher', 'Hiro', 'Hope_-_natural_conversations', 'Hope_-_upbeat_and_clear', 'Huss', 'Hyznberg_-_Crime_Time_Cool', 'Ian_Cartwell_-_Suspense_Mystery_and_Thriller', 'Igor_Radio', 'Illya_-_Soft_and_neutral', 'Isabel_-_Soft_Spoken_Teen_Youth', 'Isac', 'Isadore_', 'Ivy_-_Female_Childish_-_Young_Innocent__Bubbly', 'Ivys_Allure', 'Jace_Nox_-_Mellow_Gentle_and_Diverse', 'Jack_-_Calm_Monotone_Measured_Speech', 'Jack_the_Pirate', 'Jackson_-_Confident_Charismatic_and_Approachable', 'Jacob_-_Teen_and_Popular', 'Jacob_Dayi', 'Jacqui_Griffin', 'Jada_-_confident_and_direct', 'Jalia_-_soothing_female_voice', 'Jamal_', 'James', 'James_-_British_TV_presenter', 'James_-_classic_narrator', 'James_-_professional_and_authoritative', 'James_Lindsay_Pro', 'Jameson_-_Guided_Meditation__Narration', 'Jamie_-_young_child_voice', 'Jan', 'Janet', 'Jaquon', 'Jarvis_-_Polite_and_Upfront', 'Jason_-_Authoritative_Smooth_and_Approachable', 'Jay_-_Proper_Mancunian', 'Jeevan_-_Expressive_Indian_Voice', 'Jenny', 'Jerry_-_Presenter_Announcer_Event', 'Jerry_Beharry_-_Conversational', 'Jessica', 'Jessica_-_Cali_girl', 'Jessica_-_meditative', 'Jessica_-_smart_coach', 'Jessica_Anne_Bogart_-_A_VO_Professional_now_cloned', 'Jhon_-_casual_and_friendly', 'Jhonny_-_Agradable_reading', 'Joe', 'Joe_-_British_male_in_high_quality', 'Joey', 'Joey_-_Upbeat_Popular_News_Host', 'Joey_-_Youthful_and_Energetic', 'John2', 'John_-_American_War_Speech', 'John_-_Old_and_kind_', 'John_-_The_Heart_Of_America', 'John_Adams', 'John_Doe_-_Deep', 'John_Fernandes_-_Vibrant_British_Voice', 'John_Martin_-_Funny', 'Johnny_-_deep_and_gruff', 'Johnny_Lefors', 'Jona_-_man_of_the_Desert', 'Jonah_-_sassy_young_male', 'Jonathon', 'Jose_Feliciano_Voice_Clone', 'Joseph_-_Comforting_', 'Joseph_-_Cool_calm_and_great_for_narration', 'Joseph_-_motivational_speaker', 'Joy_Love', 'Judith_-_calm_and_confident', 'Julia_-_soft_and_shy', 'Julian_-_deep_rich_mature_British_voice', 'JuniorDT', 'Justin_-_hyped', 'Kai_Selekwa', 'Kamwe', 'Karan', 'Karan_-_EnglishStandup_Comedian_', 'Karl_C._Shroff_-_Professional_Calm_Voice', 'Karl_Stuke', 'Kass_-_Energetic_Casual_Engaging', 'Kat_Dollar', 'Kavya_-_Energetic_Kids_Voice_', 'Keel_-_confident_dramatic_narrator', 'Kelcey_-_Teen_and_Adventurous', 'Kellan_-_soft_and_gentle', 'Ken_-_African_man_with_heavy_accent', 'Ken_-_Influential_British_Male', 'Kenneth_-_calm_newcaster', 'Kevin_W._Krause_', 'Khemet_-_Deep_and_Powerful', 'Kostiantyn', 'Kyle_-_narrator', 'Lachita', 'Lana-_Robin_Rekia', 'Landon_Bailey', 'Laura_-_emphatic', 'Lauren_-Confident_Quick_Talking_No_Nonsense_Gal', 'Layo_Queen', 'Lee_-_Calm_and_Relaxed', 'Lena_-_emotive_and_expressive', 'Leo', 'Leo_-_Energetic_Indian_Voice', 'Leoni_Vergara_', 'Lily_Wolff_-_Expressive_Clear_Youthful_Calming', 'Lisa_-_pleasant', 'Lisa__-_Pleasant_calm_and_dynamic', 'Long_Storyteller', 'Lowy_-_soothing_gentle_and_warm', 'Lucan_Rook__-_Energetic_Male', 'Lucia_Reid_', 'Lucy_-_British_Storyteller', 'Lucy_-_sweet_and_sensual', 'Lucy_-_yound_anime_girl', 'Luis_-_Relaxed_and_Calm_Narration_-_Pro_Recording', 'Luke_old_and_deep', 'Luminessence_-_Light_Mirror', 'Luna_Spencer', 'Lydia_-_squeaky_', 'MW', 'Maccabaeus_-_Audiobook_Narration', 'Mael_-_deep_raspy_male', 'Mahmood', 'Manohar_-_Gruff_Seasoned_and_Wise', 'Marcus', 'Maria', 'Marie-Alice', 'Mark_-_Natural_Conversations', 'Mark_-_Robust_Dependable_and_Engaging', 'Mark_-_calm_and_wise_teacher', 'Marques_-_Young_and_Wary', 'Marshal_-_Grumpy_Sourpuss', 'Marshal_-_New_Jersey_Male', 'Martas', 'Mary_-_soft_and_warm', 'Matilda', 'Mats', 'Matt', 'Matt_Snowden', 'Matthew_-_calm_and_peaceful', 'Matthew_Wayne_-_Natural_calm_steady', 'Max_-_fast_friendly_and_direct', 'Maxwell_-_deep_and_dramatic', 'Maya', 'Meera', 'Melissa', 'Mellow_Matt', 'Merlin', 'Merlin_the_Wizard_Protector_of_King_Arthur', 'Mia_-_Clear_Smooth_Professional', 'Mia_-_Old_And_Confident_', 'Micah', 'Michael_', 'Michael_-_A_narrator_with_a_buttery-smooth_deep_voice', 'Michael_-_Confident', 'Michael_-_Excited_and_Ready_to_Speak', 'Michael_Filce', 'Michela', 'Middle_age_Southern_Male', 'Mike_Adams_-_All_things_space', 'Mike_G', 'Milo', 'Mine', 'Minerva_-_Fantasy_Professor', 'Mira_Gold_-_Dystopian', 'Miranda', 'Mirilene', 'Misti_-_English_Technology_Virtual_Training_Teacher', 'Mistress_Regina', 'Modavian_-_Dignified_Experienced_Authoritative', 'Moe', 'Mohammed', 'Mohanapriya', 'Monotone_Mike', 'Mora_of_Maragall_-_Resilient_Compassionate_Inspiring', 'Mouse', 'Mr_Clem', 'Mr_President_-_Strong_Fast_and_Impactful', 'Mrs_Novella_Main_Voice_-_Althea_Female_Young_European', 'Mwika_Kayange', 'Myriam_-_sweet_Teen_Girl', 'NEW_AMREEN', 'Nadya', 'Naina_-_Sophisticated_Indian_Girl', 'Nala_-_African_Female', 'Narrador_-_documentarios', 'Natalie_-_Posh_British', 'Natasha_-_Gentle_Meditation_', 'Natasha_-_Valley_girl', 'Nate_the_Great_-_American_Male', 'Neha', 'Neil', 'Neil_-_calm_and_deep', 'Neville', 'Nia_-_Black_Female', 'Niall_-_dramatic_male', 'Nichalia_Schwartz_-_Gentle_Kind_Sweet_GenAm', 'Nicholas_-_Raspy_Mature', 'Nickrad_', 'Nicola', 'Nicoletta', 'Nicolette_-_Strong_and_Stern', 'Nicolette_-_Young_Woman_Clear_Accented', 'Nigel_-_classic', 'Nigel_J.', 'Noah_-_The_stoic_narrator', 'Nolan_-_Emotive_and_Smooth', 'Northern_Irish_Peter', 'Northern_Terry', 'ONeal', 'Ocean_鈥Monotonous_Voice', 'Oi', 'Okole', 'Old_Osirion_Woman_-_Timeless_Mystical_Nurturing', 'Older_British_gangster_-_Gravelly_and_Rough', 'Oliver_-_Documentary_Narration', 'Olivia-_sweet_and_soft', 'Omari_African_Voice_VERY_foreign_sounding.', 'Ophelia_Rose', 'Opsy', 'Oscar', 'Outstanding_for_Side_Character', 'Oxley_-_Evil_Character', 'Pablo_Marshal', 'Panda_Montana', 'Patino_-_Columbian_Spanish', 'Patrick_International', 'Patsy_Dahling', 'Paul_Martin', 'Pedro_Costa', 'Penelope', 'Persephone_-_lively', 'Peter', 'Peter_-_annoyingly_pitchy_and_enforcing', 'Peter_Owen_-_non-fiction_audiobooks_and_factual_VO', 'Philemon_-_serious_old_scientist', 'Pilar_-_Young_and_Cheerful', 'Piper', 'Pirate_Marshal', 'Pop', 'Pratheep_Tharan', 'Pro_Narrator_-_Convincing_story_teller', 'Prometheus', 'Queen_Rosamund_-_British_Older_Woman', 'Rachel', 'Rachel_M_-_Pro_British_Radio_Presenter_', 'Rachel__McGrath', 'Raju_-_Relatable_Indian_Voice', 'Rakhat_Eje_', 'Ralf_Eisend', 'Rama_-_wise_and_philosophical_sage', 'Randell-_Glone_Rekia', 'Randolph_-_Trustworthy_and_wise', 'Red_-_Dynamic_Expressive_and_Invigorating', 'Reginald_-_intense_villain', 'Researcher_-_Nerdy_and_Hesitant', 'Rhett_Sutton', 'Rhys_--_Sexy_British_Twink', 'Rich_Baritone_American_Radio_Announcer', 'Richard-2', 'Rike_Fischer', 'Road_Dawg__', 'Rob', 'Rob_-_confident_and_formal', 'Robert-__British_Narrator', 'Roberto_Riva', 'Ron_', 'Ron_-_Older_American_Story_Teller', 'Ruhaan_-_Clean_narration_voice', 'Rupert_-_British_60_years_old', 'Russell_-_Dramatic_British_TV', 'Ruth_-_grandmother_storyteller', 'Ryan_-_subtle_accent_and_deep_timbre', 'Ryan_Kurk', 'Ryan_Quin', 'Sagar_-_Voice_of_India', 'Sahara_-_Soothing_Meditation-Hypnosis-Romance', 'Sally', 'Sam_-_Chill_Southern_California_Male', 'Sam_-_Slight_Welsh_Accent', 'Sam_Bragg', 'Samantha_', 'Samantha_Narrations', 'Sanjay_-_profound_and_deep_', 'Sanna_Hartfield_Beta_1.0', 'Saphira_-_Teen_and_Nerdy', 'Sara', 'Sarcini_-_Snarky_Quick-witted_Unapologetic', 'Sasha_-_Soothing_and_Chill', 'Sayn_Awal', 'Scary_Story_', 'Scoobie_-_American_Male_enthusiastic_sharp_smart', 'Scot_Combs_Narration', 'Scott', 'Scott_Woodworth', 'Sean_John_-_Top_Quality', 'Sebastion-Young_uncertain._', 'Selena_-_Introspective_Intuitive', 'Seth_-_Vibrant_Engaging_and_Genuine', 'Sevan_Bomar_-_Black_Motivational_Speaker', 'Sexy_Female_Villain_Voice', 'Sgt_Hayes_-_Authority_Deep_Masculine', 'Shannon_B_-_Sad_Emo_Teenage_Girl', 'Shannon_B_-_Warm_Southern_Woman', 'Shayne_-_Narrator_RJ_Voice', 'Sheba', 'Shelby', 'Shelby_-_Erratic_and_Confident', 'Shells', 'Sheps_Rocky', 'Shrey_-_Deep__Engaging_', 'Simba', 'Sir_Linus_Warmheart', 'Sita_2', 'Soft_Daria_-_Meditation', 'Soft_Demure_Garden_Voice', 'Soft_young_male_voice', 'Sohaib_Jasra', 'Soothing_Narrator', 'Sophia_-_Female_UK_Accent_-_Audiobooks_E-learning_Courses_Adverts', 'Southern_Stewart', 'Sparrow_Lee_', 'Stanley', 'Stanley_', 'Starina_Jr_Pro', 'Stephen', 'Stephen_-_Narrator', 'Steve_-_Australian_Male_', 'Steve_-_British_-_Clean_Smooth_Professional', 'Steve_V', 'Steven', 'Steven_-_Business_Book_Narrator', 'Stuart_-_Energetic_and_enthusiastic', 'Summer', 'Sylvia_-_confident_sensible_wise', 'THE_PROTOTYPE_LIVE_aka_Ana_Daugherty', 'Tara_-_Conversational_Expressive_Voice', 'Tarun_C._Dhanraj_-_Rich_Warm_and_friendly', 'Tass', 'Tatiana', 'Taylor_Andrew_Commercial-Driven', 'Tere', 'Terry_Blackburn_', 'Tessa', 'Thalia_-_Mysteriously_Captivating', 'Thalias_Engine_-_Mysteriously_Captivating', 'The_Great_Conversationalist_', 'Theodore_-_Oldschool_Cool', 'Thomas_-_Measured_Clear_Informative_', 'Thomas_Candia', 'Thomas_Fischer_-_Authentic_German_Accent', 'Tiffany', 'Tim_Rooney', 'Tira_Shabbar_-_Spirited_Irreverent_Young-at-Heart', 'Tommy_-_Teen_Cool__Nonchalant_', 'Tony_-_King_of_New_York', 'Tony_-_middle_aged_male_Northern_English_native_accent', 'Tyler_', 'Tyrell', 'Tyrone', 'UK_Teen_-_Black_man_Marquess_Germain', 'Val_3.0', 'Valentino', 'Valentyna_-_Soft_and_calm', 'Veda', 'Very_Vlad_-_Soviet_Comrade', 'Victor_-_the_motivational_speaker', 'Victoria_-_classy_and_mature', 'Victorian_-_a_lady_of_quality', 'Victorino_-_Deep', 'Vidhi_-_Young__Bold', 'Vidura', 'Vikrant_-_Indian_', 'Vincent_Sparks_-_Deep_American_Voice', 'Vivian_-_knowledgeable_voice__', 'Von_-_Perfect_Storytelling_Clean_Realistic', 'W._Storytime_Oxley', 'Whimsy_-_Kids_Cartoon_Character', 'Whispering_Joe_-_a_storytelling_whisper_ASMR_British_RP_male', 'Wildebeest', 'Will_-_Young_Australian_Male', 'William_Shanks', 'Xanthippe_Abell贸_-_Exuberant_Inquisitive_Unconventional', 'Yagiz', 'Yaisa', 'Yash_A_Malhotra_-_Warm__Friendly', 'Yomiee', 'Young_Jamal', 'Yuan_-_emotional_artist_poem_romantic_sensible', 'Zach_-_Storyteller_Narrator_Audiobooks_Podcasts', 'Zakirah_-_Chill_and_Calm', 'Zara_-_Soft_and_Serene_Indian_Voice', 'Zoe', 'Zoe_-_crisp_and_strong', '_Ethan_-_Calm_Intense_and_Compelling', '_Haseeb_-_Canadian_Presentation', '_Louis_Bloom', 'glenda-_soft_and_friendly', 'wise-woman']
# Funci贸n para cargar nombres en el dropdown seg煤n el idioma seleccionado
"""def load_names(selected_language):
print(f"Idioma seleccionado: {selected_language}")
if selected_language == "Arabic":
return gr.update(choices=arabic_names, value=arabic_names[0] if arabic_names else None)
elif selected_language == "Bulgarian":
return gr.update(choices=bulgarian_names, value=bulgarian_names[0] if bulgarian_names else None)
elif selected_language == "Chinese":
return gr.update(choices=chinese_names, value=chinese_names[0] if chinese_names else None)
else:
return gr.update(choices=[], value=None)"""
def load_names(selected_language):
print(f"Idioma seleccionado: {selected_language}")
# Diccionario para mapear idiomas a listas de nombres
nombres_por_idioma = {
"Voices Legacy": show_legacy,
"Arabic": arabic_names,
"Bulgarian": bulgarian_names,
"Chinese": chinese_names,
"Croatian": croatian_names,
"Czech": czech_names_names, # Corregido el nombre de la variable
"Danish": danish_names,
"Dutch": dutch_names,
"Finnish": finnish_names,
"French": french_names,
"German": german_names,
"Greek": greek_names,
"Hindi": hindi_names,
"Hungarian": hungarian_names,
"Indonesian": indonesian_names,
"Italian": italian_names,
"Japanese": japanese_names,
"Korean": korean_names,
"Norwegian": norwegian_names,
"Polish": polish_names,
"Portuguese": portuguese_names,
"Romanian": romanian_names,
"Russian": russian_names,
"Slovak": slovak_names,
"Spanish": spanish_names,
"Swedish": swedish_names,
"Tamil": tamil_names,
"Turkish": turkish_names,
"Ukrainian": ukrainian_names,
"Vietnamese": vietnamese_names,
"English-1": english1_names,
"English-2": english2_names
}
nombres = nombres_por_idioma.get(selected_language, []) # Obtener la lista de nombres o una lista vac铆a si no se encuentra
return gr.update(choices=nombres, value=nombres[0] if nombres else None)
def load_text(selected_name, selected_language):
# Mapeo de idiomas a directorios
directorios_por_idioma = {
"Voices Legacy": "show_legacy",
"Arabic": "ar",
"Bulgarian": "bg",
"Chinese": "zh",
"Croatian": "hr",
"Czech": "cs",
"Danish": "da",
"Dutch": "nl",
"English-1": "en1", # Aseg煤rate de que estos nombres coincidan
"English-2": "en2", # con las claves de leng_and_ids
"Finnish": "fi",
"French": "fr",
"German": "de",
"Greek": "el",
"Hindi": "hi",
"Hungarian": "hu",
"Indonesian": "id",
"Italian": "it",
"Japanese": "ja",
"Korean": "ko",
"Norwegian": "no",
"Polish": "pl",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
"Slovak": "sk",
"Spanish": "es",
"Swedish": "sv",
"Tamil": "ta",
"Turkish": "tr",
"Ukrainian": "uk",
"Vietnamese": "vi"
}
dir_idioma = directorios_por_idioma.get(selected_language)
if not dir_idioma:
return "" # Manejar el caso en que el idioma no tenga directorio
ruta_archivo = f"/tmp/Voice/{dir_idioma}/{selected_name}.txt"
try:
with open(ruta_archivo, "r", encoding="utf-8") as f:
texto = f.read()
return texto
except FileNotFoundError:
return f"Archivo no encontrado: {ruta_archivo}" # Mostrar un mensaje de error si el archivo no existe
def load_text_langs(selected_language):
# Mapeo de idiomas a directorios
directorios_por_idioma = {
"Voices Legacy": "show_legacy",
"Arabic": "ar",
"Bulgarian": "bg",
"Chinese": "zh",
"Croatian": "hr",
"Czech": "cs",
"Danish": "da",
"Dutch": "nl",
"English-1": "en1", # Aseg煤rate de que estos nombres coincidan
"English-2": "en2", # con las claves de leng_and_ids
"Finnish": "fi",
"French": "fr",
"German": "de",
"Greek": "el",
"Hindi": "hi",
"Hungarian": "hu",
"Indonesian": "id",
"Italian": "it",
"Japanese": "ja",
"Korean": "ko",
"Norwegian": "no",
"Polish": "pl",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
"Slovak": "sk",
"Spanish": "es",
"Swedish": "sv",
"Tamil": "ta",
"Turkish": "tr",
"Ukrainian": "uk",
"Vietnamese": "vi"
}
dir_idioma = directorios_por_idioma.get(selected_language)
return dir_idioma
# Funci贸n para cargar el texto y el audio de referencia
def update_reference_info(speaker_reference_audio, selected_language):
# Actualizar el texto de referencia
#print(speaker_reference_audio, load_text_langs(selected_language))
text_info = load_text(speaker_reference_audio, selected_language)
# Generar la ruta del archivo de audio
audio_path = f"/tmp/Voice/{load_text_langs(selected_language)}/{speaker_reference_audio}.mp3"
# Retornar ambos valores
return text_info, audio_path
def load_params_tts(out_path,version):
out_path = Path(out_path)
# base_model_path = Path.cwd() / "models" / version
# if not base_model_path.exists():
# return "Base model not found !","","",""
ready_model_path = out_path / "ready"
vocab_path = ready_model_path / "vocab.json"
config_path = ready_model_path / "config.json"
speaker_path = ready_model_path / "speakers_xtts.pth"
reference_path = ready_model_path / "reference.wav"
model_path = ready_model_path / "model.pth"
if not model_path.exists():
model_path = ready_model_path / "unoptimize_model.pth"
if not model_path.exists():
return "Params for TTS not found", "", "", ""
return "Params for TTS loaded", model_path, config_path, vocab_path,speaker_path, reference_path
def upload_audio(audio, current_path):
if audio is None:
return current_path
upload_dir = "speaker_reference_audio"
os.makedirs(upload_dir, exist_ok=True)
if isinstance(audio, str): # If it's a string (filepath)
audio_path = audio # Use the provided path directly
if not os.path.exists(audio_path): # Check if the file exists
print(f"Error: File not found at {audio_path}")
return current_path # Or return an error message
return audio_path # Return the valid path
elif hasattr(audio, "name"): # If it's an UploadedFile object
audio_path = os.path.join(upload_dir, audio.name)
try:
with open(audio_path, "wb") as f:
f.write(audio.read())
return audio_path
except Exception as e:
print(f"Error saving uploaded audio: {e}")
return current_path
else:
print("The reference audio input format is not recognized")
return current_path
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""XTTS fine-tuning demo\n\n"""
"""
Example runs:
python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--whisper_model",
type=str,
help="Name of the whisper model selected by default (Optional) Choices are: ['large-v3','large-v2', 'large', 'medium', 'small'] Default Value: 'large-v3'",
default="large-v3",
)
parser.add_argument(
"--audio_folder_path",
type=str,
help="Path to the folder with audio files (optional)",
default="",
)
parser.add_argument(
"--share",
action="store_true",
default=False,
help="Enable sharing of the Gradio interface via public link.",
)
parser.add_argument(
"--port",
type=int,
help="Port to run the gradio demo. Default: 5003",
default=5003,
)
parser.add_argument(
"--out_path",
type=str,
help="Output path (where data and checkpoints will be saved) Default: output/",
default=str(Path.cwd() / "train_models"),
)
parser.add_argument(
"--num_epochs",
type=int,
help="Number of epochs to train. Default: 6",
default=6,
)
parser.add_argument(
"--batch_size",
type=int,
help="Batch size. Default: 2",
default=2,
)
parser.add_argument(
"--grad_acumm",
type=int,
help="Grad accumulation steps. Default: 1",
default=1,
)
parser.add_argument(
"--max_audio_length",
type=int,
help="Max permitted audio size in seconds. Default: 11",
default=11,
)
args = parser.parse_args()
language_names = {
"en": "English",
"es": "Spanish",
"fr": "French",
"de": "German",
"it": "Italian",
"pt": "Portuguese",
"pl": "Polish",
"tr": "Turkish",
"ru": "Russian",
"nl": "Dutch",
"cs": "Czech",
"ar": "Arabic",
"zh": "Chinese",
"hu": "Hungarian",
"ko": "Korean",
"ja": "Japanese",
}
with gr.Blocks(title=os.environ.get("APP_NAME", "Gradio")) as demo:
with gr.Tab("1 - Data processing"):
out_path = gr.Textbox(
label="Output path (where data and checkpoints will be saved):",
value=args.out_path,
)
# upload_file = gr.Audio(
# sources="upload",
# label="Select here the audio files that you want to use for XTTS trainining !",
# type="filepath",
# )
upload_file = gr.File(
file_count="multiple",
label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)",
)
audio_folder_path = gr.Textbox(
label="Path to the folder with audio files (optional):",
value=args.audio_folder_path,
)
whisper_model = gr.Dropdown(
label="Whisper Model",
value=args.whisper_model,
choices=[
"large-v3",
"large-v2",
"large",
"medium",
"small"
],
)
lang = gr.Dropdown(
label="Dataset Language",
value="en",
choices=list(zip(language_names.values(), language_names.keys()))
)
progress_data = gr.Label(
label="Progress:"
)
# demo.load(read_logs, None, logs, every=1)
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")
def preprocess_dataset(audio_path, audio_folder_path, language, whisper_model, out_path, train_csv, eval_csv, progress=gr.Progress(track_tqdm=True)):
clear_gpu_cache()
train_csv = ""
eval_csv = ""
out_path = os.path.join(out_path, "dataset")
os.makedirs(out_path, exist_ok=True)
if audio_folder_path:
audio_files = list(list_audios(audio_folder_path))
else:
audio_files = audio_path
if not audio_files:
return "No audio files found! Please provide files via Gradio or specify a folder path.", "", ""
else:
try:
# Loading Whisper
device = "cuda" if torch.cuda.is_available() else "cpu"
# Detect compute type
if torch.cuda.is_available():
compute_type = "float16"
else:
compute_type = "float32"
asr_model = WhisperModel(whisper_model, device=device, compute_type=compute_type)
train_meta, eval_meta, audio_total_size = format_audio_list(audio_files, asr_model=asr_model, target_language=language, out_path=out_path, gradio_progress=progress)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
# clear_gpu_cache()
# if audio total len is less than 2 minutes raise an error
if audio_total_size < 120:
message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
print(message)
return message, "", ""
print("Dataset Processed!")
return "Dataset Processed!", train_meta, eval_meta
with gr.Tab("2 - XTTS Encoder"):
load_params_btn = gr.Button(value="Load Params from output folder")
version = gr.Dropdown(
label="XTTS base version",
value="v2.0.2",
choices=[
"v2.0.3",
"v2.0.2",
"v2.0.1",
"v2.0.0",
"main"
],
)
train_csv = gr.Textbox(
label="Train CSV:",
)
eval_csv = gr.Textbox(
label="Eval CSV:",
)
custom_model = gr.Textbox(
label="(Optional) Custom model.pth file , leave blank if you want to use the base file.",
value="",
)
num_epochs = gr.Slider(
label="Number of epochs:",
minimum=1,
maximum=100,
step=1,
value=args.num_epochs,
)
batch_size = gr.Slider(
label="Batch size:",
minimum=2,
maximum=512,
step=1,
value=args.batch_size,
)
grad_acumm = gr.Slider(
label="Grad accumulation steps:",
minimum=2,
maximum=128,
step=1,
value=args.grad_acumm,
)
max_audio_length = gr.Slider(
label="Max permitted audio size in seconds:",
minimum=2,
maximum=20,
step=1,
value=args.max_audio_length,
)
clear_train_data = gr.Dropdown(
label="Clear train data, you will delete selected folder, after optimizing",
value="none",
choices=[
"none",
"run",
"dataset",
"all"
])
progress_train = gr.Label(
label="Progress:"
)
# demo.load(read_logs, None, logs_tts_train, every=1)
train_btn = gr.Button(value="Step 2 - Run the training")
optimize_model_btn = gr.Button(value="Step 2.5 - Optimize the model")
import os
import shutil
from pathlib import Path
import traceback
def train_model(custom_model, version, language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
clear_gpu_cache()
# Check if `custom_model` is a URL and download it if true.
if custom_model.startswith("http"):
print("Downloading custom model from URL...")
custom_model = download_file(custom_model, "custom_model.pth")
if not custom_model:
return "Failed to download the custom model.", "", "", "", ""
run_dir = Path(output_path) / "run"
# Remove train dir
if run_dir.exists():
shutil.rmtree(run_dir)
# Check if the dataset language matches the language you specified
lang_file_path = Path(output_path) / "dataset" / "lang.txt"
# Check if lang.txt already exists and contains a different language
current_language = None
if lang_file_path.exists():
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
if current_language != language:
print("The language that was prepared for the dataset does not match the specified language. Change the language to the one specified in the dataset")
language = current_language
if not train_csv or not eval_csv:
return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
try:
# convert seconds to waveform frames
max_audio_length = int(max_audio_length * 22050)
speaker_xtts_path, config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(custom_model, version, language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The training was interrupted due to an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""
ready_dir = Path(output_path) / "ready"
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
shutil.copy(ft_xtts_checkpoint, ready_dir / "unoptimize_model.pth")
ft_xtts_checkpoint = os.path.join(ready_dir, "unoptimize_model.pth")
# Move reference audio to output folder and rename it
speaker_reference_path = Path(speaker_wav)
speaker_reference_new_path = ready_dir / "reference.wav"
shutil.copy(speaker_reference_path, speaker_reference_new_path)
print("Model training done!")
return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_xtts_path, speaker_reference_new_path
def optimize_model(out_path, clear_train_data):
# print(out_path)
out_path = Path(out_path) # Ensure that out_path is a Path object.
ready_dir = out_path / "ready"
run_dir = out_path / "run"
dataset_dir = out_path / "dataset"
# Clear specified training data directories.
if clear_train_data in {"run", "all"} and run_dir.exists():
try:
shutil.rmtree(run_dir)
except PermissionError as e:
print(f"An error occurred while deleting {run_dir}: {e}")
if clear_train_data in {"dataset", "all"} and dataset_dir.exists():
try:
shutil.rmtree(dataset_dir)
except PermissionError as e:
print(f"An error occurred while deleting {dataset_dir}: {e}")
# Get full path to model
model_path = ready_dir / "unoptimize_model.pth"
if not model_path.is_file():
return "Unoptimized model not found in ready folder", ""
# Load the checkpoint and remove unnecessary parts.
checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
del checkpoint["optimizer"]
for key in list(checkpoint["model"].keys()):
if "dvae" in key:
del checkpoint["model"][key]
# Make sure out_path is a Path object or convert it to Path
os.remove(model_path)
# Save the optimized model.
optimized_model_file_name="model.pth"
optimized_model=ready_dir/optimized_model_file_name
torch.save(checkpoint, optimized_model)
ft_xtts_checkpoint=str(optimized_model)
clear_gpu_cache()
return f"Model optimized and saved at {ft_xtts_checkpoint}!", ft_xtts_checkpoint
def load_params(out_path):
path_output = Path(out_path)
dataset_path = path_output / "dataset"
if not dataset_path.exists():
return "The output folder does not exist!", "", ""
eval_train = dataset_path / "metadata_train.csv"
eval_csv = dataset_path / "metadata_eval.csv"
# Write the target language to lang.txt in the output directory
lang_file_path = dataset_path / "lang.txt"
# Check if lang.txt already exists and contains a different language
current_language = None
if os.path.exists(lang_file_path):
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
clear_gpu_cache()
print(current_language)
return "The data has been updated", eval_train, eval_csv, current_language
with gr.Tab("3 - Inference"):
with gr.Row():
with gr.Column() as col1:
load_params_tts_btn = gr.Button(value="Load params for TTS from output folder")
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="/content/xtts-webui/model/model.pth",
)
xtts_config = gr.Textbox(
label="XTTS config path:",
value="/content/xtts-webui/model/config.json",
)
xtts_vocab = gr.Textbox(
label="XTTS vocab path:",
value="/content/xtts-webui/model/vocab.json",
)
xtts_speaker = gr.Textbox(
label="XTTS speaker path:",
value="/content/xtts-webui/model/speakers_xtts.pth",
)
progress_load = gr.Label(
label="Progress:"
)
load_btn = gr.Button(value="Step 3 - Load XTTS model")
with gr.Column() as col2:
speaker_reference_audio = gr.Textbox(
label="Speaker Reference Audio:", # More descriptive label
value="/content/xtts-webui/model/reference.wav",
interactive=True, # Allow users to edit path manually
)
speaker_audio_upload = gr.Audio(
label="Upload Speaker Audio (wav, mp3, flac)",
type="filepath", # Just keep type="filepath"
)
tts_language = gr.Dropdown(
label="Language",
value="pt",
choices=list(zip(language_names.values(), language_names.keys()))
)
tts_text = gr.Textbox(
label="Input Text.",
value="This model sounds really good and above all, it's reasonably fast.",
)
with gr.Accordion("Advanced settings", open=False) as acr:
temperature = gr.Slider(
label="temperature",
minimum=0,
maximum=1,
step=0.05,
value=0.75,
)
length_penalty = gr.Slider(
label="length_penalty",
minimum=-10.0,
maximum=10.0,
step=0.5,
value=1,
)
repetition_penalty = gr.Slider(
label="repetition penalty",
minimum=1,
maximum=10,
step=0.5,
value=5,
)
top_k = gr.Slider(
label="top_k",
minimum=1,
maximum=100,
step=1,
value=50,
)
top_p = gr.Slider(
label="top_p",
minimum=0,
maximum=1,
step=0.05,
value=0.85,
)
sentence_split = gr.Checkbox(
label="Enable text splitting",
value=True,
)
use_config = gr.Checkbox(
label="Use Inference settings from config, if disabled use the settings above",
value=False,
)
tts_btn = gr.Button(value="Step 4 - Inference")
with gr.Column() as col3:
progress_gen = gr.Label(
label="Progress:"
)
tts_output_audio = gr.Audio(label="Generated Audio.")
reference_audio = gr.Audio(label="Reference audio used.")
with gr.Tab("2161 Voices"):
with gr.Row():
with gr.Column() as col1:
#load_params_tts_btn = gr.Button(value="Load params for TTS from output folder")
xtts_checkpoint0 = gr.Textbox(
label="XTTS checkpoint path:",
value="/content/xtts-webui/model/model.pth",
)
xtts_config0 = gr.Textbox(
label="XTTS config path:",
value="/content/xtts-webui/model/config.json",
)
xtts_vocab0 = gr.Textbox(
label="XTTS vocab path:",
value="/content/xtts-webui/model/vocab.json",
)
xtts_speaker0 = gr.Textbox(
label="XTTS speaker path:",
value="/content/xtts-webui/model/speakers_xtts.pth",
)
progress_load0 = gr.Label(
label="Progress:"
)
load_btn0 = gr.Button(value="Load model")
with gr.Column() as col2:
# Dropdown de selecci贸n de idioma
selected_language0 = gr.Dropdown(list(leng_and_ids.keys()), value="Select language", label="Language reference audio")
speaker_reference_audio0 = gr.Dropdown(interactive=True, allow_custom_value=True, label="Speaker reference audio:")
text_output0 = gr.Textbox(label="Audio reference information")
tts_language0 = gr.Dropdown(
label="Language",
value="en",
choices=list(zip(language_names.values(), language_names.keys()))
)
tts_text0 = gr.Textbox(
label="Input Text.",
value="This model sounds really good and above all, it's reasonably fast.",
)
with gr.Accordion("Advanced settings", open=False) as acr:
temperature0 = gr.Slider(
label="temperature",
minimum=0,
maximum=1,
step=0.05,
value=0.75,
)
length_penalty0 = gr.Slider(
label="length_penalty",
minimum=-10.0,
maximum=10.0,
step=0.5,
value=1,
)
repetition_penalty0 = gr.Slider(
label="repetition penalty",
minimum=1,
maximum=10,
step=0.5,
value=5,
)
top_k0 = gr.Slider(
label="top_k",
minimum=1,
maximum=100,
step=1,
value=50,
)
top_p0 = gr.Slider(
label="top_p",
minimum=0,
maximum=1,
step=0.05,
value=0.85,
)
sentence_split0 = gr.Checkbox(
label="Enable text splitting",
value=True,
)
use_config0 = gr.Checkbox(
label="Use Inference settings from config, if disabled use the settings above",
value=False,
)
tts_btn0 = gr.Button(value="Generate")
selected_language0.change(load_names, inputs=selected_language0, outputs=speaker_reference_audio0)
#speaker_reference_audio0.change(load_text, inputs=[speaker_reference_audio0, selected_language0], outputs=text_output0)
with gr.Column() as col3:
progress_gen0 = gr.Label(
label="Progress:"
)
tts_output_audio0 = gr.Audio(label="Generated Audio.")
reference_audio0 = gr.Audio(label="Reference audio used.")
speaker_reference_audio0.change(update_reference_info, inputs=[speaker_reference_audio0, selected_language0], outputs=[text_output0, reference_audio0])
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
audio_folder_path,
lang,
whisper_model,
out_path,
train_csv,
eval_csv
],
outputs=[
progress_data,
train_csv,
eval_csv,
],
)
load_params_btn.click(
fn=load_params,
inputs=[out_path],
outputs=[
progress_train,
train_csv,
eval_csv,
lang
]
)
train_btn.click(
fn=train_model,
inputs=[
custom_model,
version,
lang,
train_csv,
eval_csv,
num_epochs,
batch_size,
grad_acumm,
out_path,
max_audio_length,
],
outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint,xtts_speaker, speaker_reference_audio],
)
optimize_model_btn.click(
fn=optimize_model,
inputs=[
out_path,
clear_train_data
],
outputs=[progress_train,xtts_checkpoint0],
)
load_btn0.click(
fn=load_model,
inputs=[
xtts_checkpoint0,
xtts_config0,
xtts_vocab0,
xtts_speaker0
],
outputs=[progress_load0],
)
tts_btn0.click(
fn=run_tts0,
inputs=[
selected_language0,
tts_language0,
tts_text0,
speaker_reference_audio0,
temperature0,
length_penalty0,
repetition_penalty0,
top_k0,
top_p0,
sentence_split0,
use_config0
],
outputs=[progress_gen0, tts_output_audio0,reference_audio0],
)
load_btn.click(
fn=load_model,
inputs=[
xtts_checkpoint,
xtts_config,
xtts_vocab,
xtts_speaker
],
outputs=[progress_load],
)
tts_btn.click(
fn=run_tts,
inputs=[
tts_language,
tts_text,
speaker_reference_audio,
temperature,
length_penalty,
repetition_penalty,
top_k,
top_p,
sentence_split,
use_config
],
outputs=[progress_gen, tts_output_audio,reference_audio],
)
load_params_tts_btn.click(
fn=load_params_tts,
inputs=[
out_path,
version
],
outputs=[progress_load,xtts_checkpoint,xtts_config,xtts_vocab,xtts_speaker,speaker_reference_audio],
)
speaker_audio_upload.upload(
upload_audio,
inputs=[speaker_audio_upload, speaker_reference_audio],
outputs=speaker_reference_audio,
)
demo.launch(
share=args.share,
debug=False,
server_port=args.port,
# inweb=True,
# server_name="localhost"
)