--- license: apache-2.0 language: - en library_name: transformers tags: - multimodal - aria --- # Aria Model Card ## Key features - **SoTA Multimodal Native Performance**: Aria achieves strong performance on a wide range of multimodal, language, and coding tasks. It is superior in video and document understanding. - **Lightweight and Fast**: Aria is a mixture-of-expert model with 3.9B activated parameters per token. It efficently encodes visual input of variable sizes and aspect ratios. - **Long Multimodal Context Window**: Aria supports multimodal input of up to 64K tokens. It can caption a 256-frame video in 10 seconds. ## Benchmark | Category | Benchmark | Aria | Pixtral 12B | Llama3.2 11B | GPT-4o mini | Gemini-1.5 Flash | |-------------------------------------|-------------------|--------|-------------|--------------|-------------|------------------| | **Knowledge (Multimodal)** | MMMU | 54.9 | 52.5 | 49.6 | 59.4 | 56.1 | | **Math (Multimodal)** | MathVista | 66.1 | 58.0 | 51.5 | - | 63.8 | | **Document** | DocQA | 92.6 | 90.7 | 84.4 | - | 89.9 | | **Chart** | ChartQA | 86.4 | 81.8 | 78.7 | - | 85.4 | | **Scene Text** | TextVQA | 81.1 | - | - | - | 78.7 | | **General Visual QA** | MMBench-1.1 | 80.3 | - | - | 76.0 | - | | **Video Understanding** | LongVideoBench | 66.6 | 47.4 | 45.7 | 58.8 | 62.4 | | **Knowledge (Language)** | MMLU (5-shot) | 73.3 | 69.2 | 69.4 | - | 78.9 | | **Math (Language)** | MATH | 50.8 | 48.1 | 51.9 | 70.2 | - | | **Reasoning (Language)** | ARC Challenge | 91.0 | - | 83.4 | 96.4 | - | | **Coding** | HumanEval | 73.2 | 72.0 | 72.6 | 87.2 | 74.3 | ## Quick Start ### Installation ``` pip install git+github.com/rhymes-ai/Aria.git pip install flash-attn --no-build-isolation ``` ### Inference Aria has 25.3B total parameters, it can be loaded in one A100 (80GB) GPU with bfloat16 precision. Here is a code snippet to show you how to use Aria. ```python import requests import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor model_id_or_path = "rhymes-ai/Aria" model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" image = Image.open(requests.get(image_path, stream=True).raw) messages = [ { "role": "user", "content": [ {"text": None, "type": "image"}, {"text": "what is the image?", "type": "text"}, ], } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=text, images=image, return_tensors="pt") inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16): output = model.generate( **inputs, max_new_tokens=500, stop_strings=["<|im_end|>"], tokenizer=processor.tokenizer, do_sample=True, temperature=0.9, ) output_ids = output[0][inputs["input_ids"].shape[1]:] result = processor.decode(output_ids, skip_special_tokens=True) print(result) ``` ### Advanced Inference and Fine-tuning We provide a [codebase](https://github.com/rhymes-ai/Aria) for more advanced usage of Aria, including vllm inference, cookbooks, and fine-tuning on custom datasets. ## Citation If you find our work helpful, please consider citing. ``` @article{aria, title={}, author={}, year={2024}, journal={} } ```