--- license: mit tags: - generated_from_trainer model-index: - name: bert_base_tcm_0.6 results: [] --- # bert_base_tcm_0.6 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0109 - Criterio Julgamento Precision: 0.8409 - Criterio Julgamento Recall: 0.925 - Criterio Julgamento F1: 0.8810 - Criterio Julgamento Number: 80 - Data Sessao Precision: 0.7838 - Data Sessao Recall: 0.8056 - Data Sessao F1: 0.7945 - Data Sessao Number: 36 - Modalidade Licitacao Precision: 0.9517 - Modalidade Licitacao Recall: 0.9718 - Modalidade Licitacao F1: 0.9617 - Modalidade Licitacao Number: 284 - Numero Exercicio Precision: 0.9706 - Numero Exercicio Recall: 0.9925 - Numero Exercicio F1: 0.9814 - Numero Exercicio Number: 133 - Objeto Licitacao Precision: 0.6143 - Objeto Licitacao Recall: 0.7544 - Objeto Licitacao F1: 0.6772 - Objeto Licitacao Number: 57 - Valor Objeto Precision: 0.8571 - Valor Objeto Recall: 1.0 - Valor Objeto F1: 0.9231 - Valor Objeto Number: 6 - Overall Precision: 0.8917 - Overall Recall: 0.9396 - Overall F1: 0.9150 - Overall Accuracy: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1