File size: 1,728 Bytes
620d294 cc82c1b 620d294 cc82c1b 620d294 cc82c1b 9ab40f6 620d294 cc82c1b 620d294 1641d0f 620d294 7490d82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
tags:
- LoRA
- QLoRa
- Merged LoRA Model
model-index:
- name: sql-guanaco-13b-merged
results: []
datasets:
- richardr1126/sql-create-context_guanaco_style
spaces:
- richardr1126/sql-guanaco-13b-demo
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sql-guanaco-13b-merged
- This is a merged LoRA model that can be used with AutoModelForCausalLM or LlamaModelForCausalLM.
- It is a combination of [richardr1126/guanaco-13b-merged](https://huggingface.co/richardr1126/guanaco-13b-merged) + [richardr1126/lora-sql-guanaco-13b-adapter](https://huggingface.co/richardr1126/lora-sql-guanaco-13b-adapter).
- This LoRA was fine-tuned using QLoRA techniques on the [richardr1126/sql-create-context_guanaco_style](https://huggingface.co/datasets/richardr1126/sql-create-context_guanaco_style) dataset.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 1875
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
## Citation
```bibtex
@article{dettmers2023qlora,
title={QLoRA: Efficient Finetuning of Quantized LLMs},
author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
journal={arXiv preprint arXiv:2305.14314},
year={2023}
}
``` |