File size: 1,412 Bytes
c2f53a1 cc16d61 5325d9f c2f53a1 07aa86c c2f53a1 cc16d61 07aa86c 75cd0b7 c781567 c2f53a1 07aa86c c2f53a1 cc16d61 2394f91 c2f53a1 f5c8074 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
tags:
- LoRA
- QLoRa
- LoRA Adapter
- LLaMA
model-index:
- name: lora-sql-guanaco-13b-adapter
results: []
datasets:
- richardr1126/sql-create-context_guanaco_style
spaces:
- richardr1126/NL2SQL-Guanaco-Chat
---
# lora-sql-guanaco-13b-adapter
This is a LoRA adapter for [richardr1126/guanaco-13b-merged](https://huggingface.co/richardr1126/guanaco-13b-merged), or any other merged guanaco-13b model, fine tuned from LLaMA.
<br>
This LoRA was fine-tuned using QLoRA techniques on the [richardr1126/sql-create-context_guanaco_style](https://huggingface.co/datasets/richardr1126/sql-create-context_guanaco_style) dataset.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 1875
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
## Citation
```bibtex
@article{dettmers2023qlora,
title={QLoRA: Efficient Finetuning of Quantized LLMs},
author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
journal={arXiv preprint arXiv:2305.14314},
year={2023}
}
``` |