--- thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png license: llama3 datasets: - mc4 - wikipedia - EleutherAI/pile - oscar-corpus/colossal-oscar-1.0 - cc100 language: - ja - en tags: - llama - llama-3 inference: false base_model: meta-llama/Meta-Llama-3-8B --- # `Llama 3 Youko 8B (rinna/llama-3-youko-8b)` ![rinna-icon](./rinna.png) # Overview We conduct continual pre-training of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on **22B** tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks. The name `youko` comes from the Japanese word [`妖狐/ようこ/Youko`](https://ja.wikipedia.org/wiki/%E5%A6%96%E7%8B%90), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)). | Size | Continual Pre-Training | Instruction-Tuning | | :- | :- | :- | | 8B | Llama 3 Youko 8B [[HF]](https://huggingface.co/rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq) | | 70B | Llama 3 Youko 70B [[HF]](https://huggingface.co/rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq) | * **Library** The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). * **Model architecture** A 32-layer, 4096-hidden-size transformer-based language model. Refer to the [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for architecture details. * **Training: Built with Meta Llama 3** The model was initialized with the [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model and continually trained on around **22B** tokens from a mixture of the following corpora - [Japanese CC-100](https://huggingface.co/datasets/cc100) - [Japanese C4](https://huggingface.co/datasets/mc4) - [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0) - [The Pile](https://huggingface.co/datasets/EleutherAI/pile) - [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) - rinna curated Japanese dataset * **Contributors** - [Koh Mitsuda](https://huggingface.co/mitsu-koh) - [Xinqi Chen](https://huggingface.co/Keely0419) - [Toshiaki Wakatsuki](https://huggingface.co/t-w) - [Kei Sawada](https://huggingface.co/keisawada) --- # Benchmarking Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html). --- # How to use the model ~~~~python import transformers import torch model_id = "rinna/llama-3-youko-8b" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" ) output = pipeline( "西田幾多郎は、", max_new_tokens=256, do_sample=True ) print(output[0]["generated_text"]) ~~~~ --- # Tokenization The model uses the original [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) tokenizer. --- # How to cite ```bibtex @misc{rinna-llama-3-youko-8b, title = {rinna/llama-3-youko-8b}, author = {Mitsuda, Koh and Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei}, url = {https://huggingface.co/rinna/llama-3-youko-8b} } @inproceedings{sawada2024release, title = {Release of Pre-Trained Models for the {J}apanese Language}, author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, month = {5}, year = {2024}, pages = {13898--13905}, url = {https://aclanthology.org/2024.lrec-main.1213}, note = {\url{https://arxiv.org/abs/2404.01657}} } ``` --- # References ```bibtex @article{llama3modelcard, title = {Llama 3 Model Card}, author = {AI@Meta}, year = {2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } @software{gpt-neox-library, title = {{GPT}-{N}eo{X}: Large Scale Autoregressive Language Modeling in {P}y{T}orch}, author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel}, doi = {10.5281/zenodo.5879544}, month = {8}, year = {2021}, version = {0.0.1}, url = {https://www.github.com/eleutherai/gpt-neox} } ``` --- # License [Meta Llama 3 Community License](https://llama.meta.com/llama3/license/)