--- thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png datasets: - mc4 - wikipedia - EleutherAI/pile - oscar-corpus/colossal-oscar-1.0 - cc100 language: - ja - en tags: - qwen inference: false --- # `rinna/nekomata-7b` ![rinna-icon](./rinna.png) # Overview We conduct continual pre-training of [qwen-7b](https://huggingface.co/Qwen/Qwen-7B) on **30B** tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks. It also enjoys the following great features provided by the original Qwen model. * The inclusive Qwen vocabulary (vocab size > 150k) enables the model to processs Japanese texts much more efficiently than the previously released [youri series](https://huggingface.co/collections/rinna/youri-7b-654053610cb8e9d8e6289efc). * The model supports a maximum sequence length of 32768. The name `nekomata` comes from the Japanese word [`猫又/ねこまた/Nekomata`](https://ja.wikipedia.org/wiki/%E7%8C%AB%E5%8F%88), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)). * **Library** The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). * **Model architecture** A 32-layer, 4096-hidden-size transformer-based language model. Please refer to the [Qwen paper](https://arxiv.org/abs/2309.16609) for architecture details. * **Continual pre-training** The model was initialized with the [qwen-7b](https://huggingface.co/Qwen/Qwen-7B) model and continually trained on around **30B** tokens from a mixture of the following corpora - [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) - [Japanese C4](https://huggingface.co/datasets/mc4) - [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0) - [The Pile](https://huggingface.co/datasets/EleutherAI/pile) - [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) - rinna curated Japanese dataset * **Authors** - [Tianyu Zhao](https://huggingface.co/tianyuz) - [Akio Kaga](https://huggingface.co/rakaga) - [Kei Sawada](https://huggingface.co/keisawada) --- # Benchmarking Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html). --- # How to use the model ~~~~python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("rinna/nekomata-7b", trust_remote_code=True) # Use GPU with bf16 # model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True, bf16=True) # Use GPU with fp16 # model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True, fp16=True) # Use CPU # model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="cpu", trust_remote_code=True) # Automatically select device and precision model = AutoModelForCausalLM.from_pretrained("rinna/nekomata-7b", device_map="auto", trust_remote_code=True) text = "西田幾多郎は、" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=200, min_new_tokens=200, do_sample=True, temperature=1.0, top_p=0.95, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) ~~~~ --- # Tokenization The model uses the original Qwen tokenizer. It augments the [`cl100k` tiktoken tokenizer](https://github.com/openai/tiktoken) and has a vocabulary size of 151,936. The inclusive vocabulary helps the model to reach a better tokenization efficiency, especially for Japanese texts. We compared the `Qwen` tokenizer (as used in `nekomata`) and the `llama-2` tokenizer (as used in `youri`) on different text collections and found that the Qwen tokenizer achieves a much better byte2token rate (i.e. the average number of tokens produced from 1 byte of text) as following. A lower byte2token rate indicates a better tokenization efficiency. | Tokenizer | Japanese | English | Multilingual | | --- | --- | --- | --- | | Qwen | 0.24 | 0.27 | 0.27 | | llama-2 | 0.40 | 0.29 | 0.36 | --- # How to cite ~~~ @misc{RinnaNekomata7b, url={https://huggingface.co/rinna/nekomata-7b}, title={rinna/nekomata-7b}, author={Zhao, Tianyu and Kaga, Akio and Sawada, Kei} } ~~~ --- # Citations ~~~ @software{gpt-neox-library, title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}}, author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel}, url = {https://www.github.com/eleutherai/gpt-neox}, doi = {10.5281/zenodo.5879544}, month = {8}, year = {2021}, version = {0.0.1}, } ~~~ --- # License [Tongyi Qianwen LICENSE AGREEMENT](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)