File size: 2,478 Bytes
83d9f0d 1b80cf0 83d9f0d 1b80cf0 83d9f0d 1b80cf0 83d9f0d f5bab52 1b80cf0 83d9f0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: outputs-project-id2223
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 31.3824
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# outputs-project-id2223
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Gen Len: 19.7143
- Loss: 2.2606
- Rouge1: 31.3824
- Rouge2: 9.9473
- Rougel: 24.9422
- Rougelsum: 24.9453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:------:|:-------:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 2.6596 | 1.0 | 12753 | 19.6937 | 2.4320 | 29.2361 | 8.3218 | 22.9893 | 22.9993 |
| 2.5914 | 2.0 | 25506 | 19.7058 | 2.3844 | 29.8093 | 8.7641 | 23.5074 | 23.5169 |
| 2.5171 | 4.0 | 51012 | 19.6821 | 2.3208 | 30.6455 | 9.3612 | 24.2744 | 24.2798 |
| 2.4813 | 6.0 | 76518 | 19.6813 | 2.2865 | 31.1312 | 9.7512 | 24.6686 | 24.6688 |
| 2.4517 | 7.0 | 89271 | 19.7118 | 2.2757 | 31.1544 | 9.7509 | 24.6982 | 24.7016 |
| 2.449 | 9.0 | 114777 | 19.7143 | 2.2606 | 31.3824 | 9.9473 | 24.9422 | 24.9453 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|