--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-q-classifier-3 results: [] --- # distilbert-q-classifier-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3192 - Accuracy: 0.9238 - Precision Weighted: 0.9240 - Recall Weighted: 0.9238 - F1 Weighted: 0.9239 - Precision Macro: 0.9240 - Recall Macro: 0.9241 - F1 Macro: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Weighted | Recall Weighted | F1 Weighted | Precision Macro | Recall Macro | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------:|:--------:| | No log | 1.0 | 68 | 0.4096 | 0.8558 | 0.8587 | 0.8558 | 0.8567 | 0.8588 | 0.8561 | 0.8569 | | No log | 2.0 | 136 | 0.3029 | 0.8963 | 0.8959 | 0.8963 | 0.8959 | 0.8965 | 0.8964 | 0.8962 | | No log | 3.0 | 204 | 0.2803 | 0.8914 | 0.8935 | 0.8914 | 0.8898 | 0.8942 | 0.8911 | 0.8900 | | No log | 4.0 | 272 | 0.2651 | 0.9109 | 0.9132 | 0.9109 | 0.9114 | 0.9135 | 0.9105 | 0.9113 | | No log | 5.0 | 340 | 0.2840 | 0.9222 | 0.9247 | 0.9222 | 0.9226 | 0.9241 | 0.9231 | 0.9228 | | No log | 6.0 | 408 | 0.2939 | 0.9254 | 0.9253 | 0.9254 | 0.9253 | 0.9252 | 0.9258 | 0.9254 | | No log | 7.0 | 476 | 0.3011 | 0.9238 | 0.9242 | 0.9238 | 0.9239 | 0.9241 | 0.9242 | 0.9241 | | 0.2181 | 8.0 | 544 | 0.3170 | 0.9190 | 0.9199 | 0.9190 | 0.9192 | 0.9201 | 0.9186 | 0.9191 | | 0.2181 | 9.0 | 612 | 0.3135 | 0.9222 | 0.9224 | 0.9222 | 0.9223 | 0.9225 | 0.9220 | 0.9223 | | 0.2181 | 10.0 | 680 | 0.3192 | 0.9238 | 0.9240 | 0.9238 | 0.9239 | 0.9240 | 0.9241 | 0.9240 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1