|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.888 recall_macro: 0.333 precision_macro: 0.296 f1_macro: 0.314 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.888 recall_macro: 0.333 precision_macro: 0.296 f1_macro: 0.314 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.636 recall_macro: 0.413 precision_macro: 0.410 f1_macro: 0.377 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.636 recall_macro: 0.413 precision_macro: 0.410 f1_macro: 0.377 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.883 recall_macro: 0.387 precision_macro: 0.438 f1_macro: 0.397 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.611 recall_macro: 0.339 precision_macro: 0.250 f1_macro: 0.250 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.682 recall_macro: 0.364 precision_macro: 0.346 f1_macro: 0.333 |
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.720 recall_macro: 0.388 precision_macro: 0.365 f1_macro: 0.359 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.806 recall_macro: 0.417 precision_macro: 0.392 f1_macro: 0.398 |
|
=== new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.806 recall_macro: 0.417 precision_macro: 0.392 f1_macro: 0.398 |
|
|
|
Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.802 recall_macro: 0.397 precision_macro: 0.378 f1_macro: 0.383 |
|
|
|
Best model: |
|
LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
Best Scores: |
|
accuracy: 0.806 recall_macro: 0.417 precision_macro: 0.392 f1_macro: 0.398 |
|
|