--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-Facial-Expression-Recognition results: [] pipeline_tag: image-classification base_model: motheecreator/vit-Facial-Expression-Recognition library_name: transformers --- # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3708 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5551 | 0.4327 | 100 | 0.3728 | 0.8742 | | 0.5725 | 0.8653 | 200 | 0.3702 | 0.8749 | | 0.5513 | 1.2980 | 300 | 0.3683 | 0.8751 | | 0.5565 | 1.7307 | 400 | 0.3681 | 0.8754 | | 0.5395 | 2.1633 | 500 | 0.3708 | 0.8735 | | 0.5306 | 2.5960 | 600 | 0.3696 | 0.8738 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1