--- license: apache-2.0 base_model: sshleifer/distilbart-cnn-6-6 tags: - generated_from_trainer datasets: - wcep-10 metrics: - rouge model-index: - name: thesis-bart-finetuned-on-original-wcep results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wcep-10 type: wcep-10 config: roberta split: validation args: roberta metrics: - name: Rouge1 type: rouge value: 37.2224 --- # thesis-bart-finetuned-on-original-wcep This model is a fine-tuned version of [sshleifer/distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6) on the wcep-10 dataset. It achieves the following results on the evaluation set: - Loss: 1.9981 - Rouge1: 37.2224 - Rouge2: 16.5575 - Rougel: 26.7904 - Rougelsum: 30.3497 - Gen Len: 67.5627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.0801 | 1.0 | 510 | 2.0119 | 36.4915 | 16.0165 | 26.3565 | 29.7397 | 67.9882 | | 1.7597 | 2.0 | 1020 | 1.9868 | 36.9513 | 16.3776 | 26.4974 | 30.1234 | 68.3961 | | 1.5997 | 3.0 | 1530 | 1.9981 | 37.2224 | 16.5575 | 26.7904 | 30.3497 | 67.5627 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2