rootacess commited on
Commit
772d1bb
·
1 Parent(s): 3ee73fd

First hands on: Lunar Lander v2 with PPO

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.56 +/- 20.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9457326670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9457326700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9457326790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9457326820>", "_build": "<function ActorCriticPolicy._build at 0x7f94573268b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9457326940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94573269d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9457326a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9457326af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9457326b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9457326c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9457326ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f945731f810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673792448511132517, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBqlT3DLVC6UEyeOJQTNTSDCH871We2twAAgD8AAIA/ZiBlvHpkpD8yZVy9rS7zvn1vrrxt+lm9AAAAAAAAAACNSLk9Pcp6uQQ4oDqaCR0zNGUVu9bnvbkAAIA/AACAP3MdqT0/Y78/ynMOP+x0wD2/oJU7QzQOPgAAAAAAAAAAjROiPY+CJ7pOLpe2ZnQWMT6OGLv4+7M1AACAPwAAgD+aria9KRhxusEuELj32OUx49yIu4RhJTcAAIA/AACAP7PK0D3DnW26h5OnO7yUUrWXARk70sfDugAAgD8AAIA/gFTCPcNJSbp1i8I6SwaxNVLgt7pV++W5AACAPwAAgD+NxZS99mRoukVHM7m8UF60eKVaOqZMUTgAAIA/AACAP03TWj3sIey5mhfsNClGlDBCjLg7uBpStAAAgD8AAIA/zYWVvBTgmbrOop04/sKOMwIwhbrzE7a3AACAPwAAgD/mTeS9FHiSujrM/Dk54Xy2NMXQupSSEbkAAIA/AAAAAGb5cz32pFi69tpYN5zmNjLhs6O6Stp+tgAAgD8AAIA/mtkdPMNVYboMU7+7SPIBOPyKF7u90Bi3AACAPwAAgD8zM2Y8XP82urOFFjp3nbE0/7Kfu2SIMbkAAIA/AACAP2YXs72PNhy6IPqWugT7RrXk5Y27L5WzOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjXxe8dR9ZECUhpRSlIwBbJRN6AOMAXSUR0CRZ6fGdZq3dX2UKGgGaAloD0MI6x9EMuQhYUCUhpRSlGgVTegDaBZHQJFtfsXzlLh1fZQoaAZoCWgPQwhSf73CAu9kQJSGlFKUaBVN6ANoFkdAkW8mG21D0HV9lChoBmgJaA9DCG/zxklhN1pAlIaUUpRoFU3oA2gWR0CRdMZIxxkvdX2UKGgGaAloD0MILsbAOo7HbUCUhpRSlGgVTUcDaBZHQJF5yPyTY/V1fZQoaAZoCWgPQwhBvK5fMI9hQJSGlFKUaBVN6ANoFkdAkXuKUzKs+3V9lChoBmgJaA9DCMoV3uVisXBAlIaUUpRoFU2kAmgWR0CRe+BNmDlHdX2UKGgGaAloD0MI+imOAy+ZYECUhpRSlGgVTegDaBZHQJF99Lh73PB1fZQoaAZoCWgPQwj/BBcraqZmQJSGlFKUaBVN6ANoFkdAkYED9XLeRHV9lChoBmgJaA9DCJf/kH57+WFAlIaUUpRoFU3oA2gWR0CRgZspXp4bdX2UKGgGaAloD0MIDwnf+xtRZUCUhpRSlGgVTegDaBZHQJGFV9YwIt11fZQoaAZoCWgPQwgYzF8h85plQJSGlFKUaBVN6ANoFkdAkaVwcYIjW3V9lChoBmgJaA9DCBAGnnsP3WNAlIaUUpRoFU3oA2gWR0CRswXwb2lEdX2UKGgGaAloD0MIIuF7fwPXYkCUhpRSlGgVTegDaBZHQJG08ZbY9Pl1fZQoaAZoCWgPQwj9vRQeNHRkQJSGlFKUaBVN6ANoFkdAkbb9at9x63V9lChoBmgJaA9DCEgWMIHbKmRAlIaUUpRoFU3oA2gWR0CRuRru6VdHdX2UKGgGaAloD0MILESHwBHZYUCUhpRSlGgVTegDaBZHQJG8qcPOIIp1fZQoaAZoCWgPQwhd+wJ64TNkQJSGlFKUaBVN6ANoFkdAkcF1j3Ehq3V9lChoBmgJaA9DCN7H0RzZLWBAlIaUUpRoFU3oA2gWR0CRwwFmnO0LdX2UKGgGaAloD0MIN2xblNkGRECUhpRSlGgVS75oFkdAkcQ4fjjrA3V9lChoBmgJaA9DCFwf1hu1j3FAlIaUUpRoFU27A2gWR0CRxSOy3Td+dX2UKGgGaAloD0MInfUpx+R1Z0CUhpRSlGgVTegDaBZHQJHL/I4lyBF1fZQoaAZoCWgPQwidEDroEgNgQJSGlFKUaBVN6ANoFkdAkc2Z8KG+K3V9lChoBmgJaA9DCJUNayqL/2NAlIaUUpRoFU3oA2gWR0CRze8uSOindX2UKGgGaAloD0MIvqJbr+mHYUCUhpRSlGgVTegDaBZHQJHP5KL876p1fZQoaAZoCWgPQwieeTnsvl1FQJSGlFKUaBVL02gWR0CR0UOqNp/PdX2UKGgGaAloD0MIk8X9R6Y9ZUCUhpRSlGgVTegDaBZHQJHSkVwgkkd1fZQoaAZoCWgPQwiWW1oNiYZiQJSGlFKUaBVN6ANoFkdAkdMOq7yxzXV9lChoBmgJaA9DCHBDjNe8lWFAlIaUUpRoFU3oA2gWR0CR1jsHjZL7dX2UKGgGaAloD0MIyhe0kMAocUCUhpRSlGgVTXIBaBZHQJHYGPmxMWZ1fZQoaAZoCWgPQwh/Tdaoh8ttQJSGlFKUaBVNMgNoFkdAkeFHi704BHV9lChoBmgJaA9DCN8WLNWF9mZAlIaUUpRoFU3oA2gWR0CR4VokRjBmdX2UKGgGaAloD0MIQdMSK6NVY0CUhpRSlGgVTegDaBZHQJIC2mJm/WV1fZQoaAZoCWgPQwhnmNpSBzJgQJSGlFKUaBVN6ANoFkdAkgUDNdJJ5HV9lChoBmgJaA9DCCeIug/ACG9AlIaUUpRoFU1VA2gWR0CSBtp5/smfdX2UKGgGaAloD0MICfmgZzPdYUCUhpRSlGgVTegDaBZHQJIK6eTV2A51fZQoaAZoCWgPQwg34V6ZN0lwQJSGlFKUaBVN6gJoFkdAkguvMKTjenV9lChoBmgJaA9DCDeKrDUUIGdAlIaUUpRoFU3oA2gWR0CSET5+pfhNdX2UKGgGaAloD0MI68cm+RHMbUCUhpRSlGgVTSMBaBZHQJIWggRsdkt1fZQoaAZoCWgPQwiKWwUx0AxkQJSGlFKUaBVN6ANoFkdAkhwT8+A3DXV9lChoBmgJaA9DCJOKxtpfemZAlIaUUpRoFU3oA2gWR0CSHGHn2ZiNdX2UKGgGaAloD0MIMErQX+jvZUCUhpRSlGgVTegDaBZHQJIeMIa99MN1fZQoaAZoCWgPQwghy4KJP3JlQJSGlFKUaBVN6ANoFkdAkh+dFKCg9XV9lChoBmgJaA9DCLKd76eG7XBAlIaUUpRoFU15AWgWR0CSIIkbPyCndX2UKGgGaAloD0MI9RCN7qCHZUCUhpRSlGgVTegDaBZHQJIg4jKPn0V1fZQoaAZoCWgPQwgPKQZINCllQJSGlFKUaBVN6ANoFkdAkiFVlK9PDnV9lChoBmgJaA9DCNTS3Arhn2xAlIaUUpRoFU3vAmgWR0CSInL5hz/7dX2UKGgGaAloD0MIbLBwkuYEXECUhpRSlGgVTegDaBZHQJIka1stTUB1fZQoaAZoCWgPQwjGw3sOLARlQJSGlFKUaBVN6ANoFkdAkiYfTkQwsXV9lChoBmgJaA9DCJoiwOmdOHBAlIaUUpRoFU2IAmgWR0CSJyEidJ8OdX2UKGgGaAloD0MIFt16TQ/NY0CUhpRSlGgVTegDaBZHQJIuMXVLBbh1fZQoaAZoCWgPQwjRdHYyONVrQJSGlFKUaBVNkgFoFkdAkkgdxlxwQ3V9lChoBmgJaA9DCPJc34eDxW9AlIaUUpRoFU0/AWgWR0CSSDkmx+rmdX2UKGgGaAloD0MImpmZmRkMY0CUhpRSlGgVTegDaBZHQJJRU9t/Fzd1fZQoaAZoCWgPQwjaWfROhURvQJSGlFKUaBVNEgJoFkdAklIEQK8cuXV9lChoBmgJaA9DCCmzQSYZ22NAlIaUUpRoFU3oA2gWR0CSVZXDWK/EdX2UKGgGaAloD0MIo68gzdh0bUCUhpRSlGgVTQcDaBZHQJJYyteUpux1fZQoaAZoCWgPQwgceSCyyGJnQJSGlFKUaBVN6ANoFkdAklq6DoQnQnV9lChoBmgJaA9DCAJIbeJk/2JAlIaUUpRoFU3oA2gWR0CSX5Rp1zQvdX2UKGgGaAloD0MI6NhBJe7bcUCUhpRSlGgVTfkCaBZHQJJjGGgzxgB1fZQoaAZoCWgPQwj3rdaJy4hxQJSGlFKUaBVN8gFoFkdAkmP2jsUqQXV9lChoBmgJaA9DCDljmBO0O2RAlIaUUpRoFU3oA2gWR0CSZKflIVdpdX2UKGgGaAloD0MIbmsLz0vvcECUhpRSlGgVTckDaBZHQJJlFDOTq0N1fZQoaAZoCWgPQwg8hPHTOCBuQJSGlFKUaBVNRgFoFkdAkmbSLZSNwXV9lChoBmgJaA9DCPomTYOigmRAlIaUUpRoFU3oA2gWR0CSZ7I2OyVwdX2UKGgGaAloD0MIAJATJoz8YkCUhpRSlGgVTegDaBZHQJJoxI4EOiF1fZQoaAZoCWgPQwi2LF+X4XNmQJSGlFKUaBVN6ANoFkdAkmk4t+TePHV9lChoBmgJaA9DCB40u+6tr2NAlIaUUpRoFU3oA2gWR0CSbvMPjGT+dX2UKGgGaAloD0MIteGwNPAVcECUhpRSlGgVTY4BaBZHQJJyzfoA4n51fZQoaAZoCWgPQwiq9BPOLhhxQJSGlFKUaBVNUAFoFkdAknSo+r2g4HV9lChoBmgJaA9DCFIMkGgCZWBAlIaUUpRoFU3oA2gWR0CSdvC+10DEdX2UKGgGaAloD0MIYvVHGEYfcUCUhpRSlGgVTUoBaBZHQJJ6bXarWAh1fZQoaAZoCWgPQwgL73IRH+VwQJSGlFKUaBVNswNoFkdAko2hqwhW53V9lChoBmgJaA9DCAk3GVXGJHFAlIaUUpRoFU3CAWgWR0CSjv6vJRwZdX2UKGgGaAloD0MIMgVrnE0vckCUhpRSlGgVTTUDaBZHQJKPSDvmYBx1fZQoaAZoCWgPQwhyUwPNZzxuQJSGlFKUaBVNuwJoFkdAkpAEtmL9/HV9lChoBmgJaA9DCLmq7Lvio3BAlIaUUpRoFU3IAWgWR0CSkf5k9U0fdX2UKGgGaAloD0MIwOldvF+EcECUhpRSlGgVTXwBaBZHQJKV+Y0EX+F1fZQoaAZoCWgPQwjFjsah/vZsQJSGlFKUaBVNUwJoFkdAkpdIeLehwnV9lChoBmgJaA9DCOcdp+jIQWlAlIaUUpRoFU3oA2gWR0CSl9umaYu1dX2UKGgGaAloD0MIbjDUYYUCUUCUhpRSlGgVS8RoFkdAkpqei8FpwnV9lChoBmgJaA9DCOun/6x5jnFAlIaUUpRoFU3XAWgWR0CSnV4u9OARdX2UKGgGaAloD0MIP1jGhu76bUCUhpRSlGgVTbUBaBZHQJKfNuejEeh1fZQoaAZoCWgPQwhgIXNlUOxgQJSGlFKUaBVN6ANoFkdAkp+MI7eVLXV9lChoBmgJaA9DCLMJMCx/4nBAlIaUUpRoFU2UAWgWR0CSogSqEOAidX2UKGgGaAloD0MIbLJGPUROcECUhpRSlGgVTdYBaBZHQJKjqw1R+Bp1fZQoaAZoCWgPQwhyUMJMWyBvQJSGlFKUaBVN2gFoFkdAkqUJs0pEyHV9lChoBmgJaA9DCJFfP8SGLm1AlIaUUpRoFU1TAWgWR0CSpd3sXzlLdX2UKGgGaAloD0MI5gXYRydBZkCUhpRSlGgVTegDaBZHQJKmu6GxlhB1fZQoaAZoCWgPQwgjEoWW9XFzQJSGlFKUaBVNSQFoFkdAkqd33QD3d3V9lChoBmgJaA9DCHi4HRoWUmJAlIaUUpRoFU3oA2gWR0CSp42qDK5kdX2UKGgGaAloD0MIxNLAj2rMckCUhpRSlGgVTZkCaBZHQJKoNaHKwIN1fZQoaAZoCWgPQwjcEOM1r+1xQJSGlFKUaBVNFgJoFkdAkqiqWom5UnV9lChoBmgJaA9DCAk3GVWGmSjAlIaUUpRoFUu6aBZHQJKqOmEXcg11fZQoaAZoCWgPQwird7gdmoFjQJSGlFKUaBVN6ANoFkdAkqvFrRBu43V9lChoBmgJaA9DCAUZARVOznFAlIaUUpRoFU2RAWgWR0CSrPvIOpbVdX2UKGgGaAloD0MITDYebDEBbkCUhpRSlGgVTVMBaBZHQJKulgG8mKJ1fZQoaAZoCWgPQwgAx549l+tCQJSGlFKUaBVLy2gWR0CSr+mp2ll9dX2UKGgGaAloD0MIVu9wO7Rdb0CUhpRSlGgVTdUDaBZHQJK9JPbfxc51fZQoaAZoCWgPQwgH0sWmFVJxQJSGlFKUaBVNQwFoFkdAkr8oBaLXMHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29f8fae92db6a1292e5dad9001e04d512a4272cf4266fa3f6b9562791d7d8a1
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9457326670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9457326700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9457326790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9457326820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f94573268b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9457326940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94573269d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9457326a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9457326af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9457326b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9457326c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9457326ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f945731f810>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673792448511132517,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBqlT3DLVC6UEyeOJQTNTSDCH871We2twAAgD8AAIA/ZiBlvHpkpD8yZVy9rS7zvn1vrrxt+lm9AAAAAAAAAACNSLk9Pcp6uQQ4oDqaCR0zNGUVu9bnvbkAAIA/AACAP3MdqT0/Y78/ynMOP+x0wD2/oJU7QzQOPgAAAAAAAAAAjROiPY+CJ7pOLpe2ZnQWMT6OGLv4+7M1AACAPwAAgD+aria9KRhxusEuELj32OUx49yIu4RhJTcAAIA/AACAP7PK0D3DnW26h5OnO7yUUrWXARk70sfDugAAgD8AAIA/gFTCPcNJSbp1i8I6SwaxNVLgt7pV++W5AACAPwAAgD+NxZS99mRoukVHM7m8UF60eKVaOqZMUTgAAIA/AACAP03TWj3sIey5mhfsNClGlDBCjLg7uBpStAAAgD8AAIA/zYWVvBTgmbrOop04/sKOMwIwhbrzE7a3AACAPwAAgD/mTeS9FHiSujrM/Dk54Xy2NMXQupSSEbkAAIA/AAAAAGb5cz32pFi69tpYN5zmNjLhs6O6Stp+tgAAgD8AAIA/mtkdPMNVYboMU7+7SPIBOPyKF7u90Bi3AACAPwAAgD8zM2Y8XP82urOFFjp3nbE0/7Kfu2SIMbkAAIA/AACAP2YXs72PNhy6IPqWugT7RrXk5Y27L5WzOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjXxe8dR9ZECUhpRSlIwBbJRN6AOMAXSUR0CRZ6fGdZq3dX2UKGgGaAloD0MI6x9EMuQhYUCUhpRSlGgVTegDaBZHQJFtfsXzlLh1fZQoaAZoCWgPQwhSf73CAu9kQJSGlFKUaBVN6ANoFkdAkW8mG21D0HV9lChoBmgJaA9DCG/zxklhN1pAlIaUUpRoFU3oA2gWR0CRdMZIxxkvdX2UKGgGaAloD0MILsbAOo7HbUCUhpRSlGgVTUcDaBZHQJF5yPyTY/V1fZQoaAZoCWgPQwhBvK5fMI9hQJSGlFKUaBVN6ANoFkdAkXuKUzKs+3V9lChoBmgJaA9DCMoV3uVisXBAlIaUUpRoFU2kAmgWR0CRe+BNmDlHdX2UKGgGaAloD0MI+imOAy+ZYECUhpRSlGgVTegDaBZHQJF99Lh73PB1fZQoaAZoCWgPQwj/BBcraqZmQJSGlFKUaBVN6ANoFkdAkYED9XLeRHV9lChoBmgJaA9DCJf/kH57+WFAlIaUUpRoFU3oA2gWR0CRgZspXp4bdX2UKGgGaAloD0MIDwnf+xtRZUCUhpRSlGgVTegDaBZHQJGFV9YwIt11fZQoaAZoCWgPQwgYzF8h85plQJSGlFKUaBVN6ANoFkdAkaVwcYIjW3V9lChoBmgJaA9DCBAGnnsP3WNAlIaUUpRoFU3oA2gWR0CRswXwb2lEdX2UKGgGaAloD0MIIuF7fwPXYkCUhpRSlGgVTegDaBZHQJG08ZbY9Pl1fZQoaAZoCWgPQwj9vRQeNHRkQJSGlFKUaBVN6ANoFkdAkbb9at9x63V9lChoBmgJaA9DCEgWMIHbKmRAlIaUUpRoFU3oA2gWR0CRuRru6VdHdX2UKGgGaAloD0MILESHwBHZYUCUhpRSlGgVTegDaBZHQJG8qcPOIIp1fZQoaAZoCWgPQwhd+wJ64TNkQJSGlFKUaBVN6ANoFkdAkcF1j3Ehq3V9lChoBmgJaA9DCN7H0RzZLWBAlIaUUpRoFU3oA2gWR0CRwwFmnO0LdX2UKGgGaAloD0MIN2xblNkGRECUhpRSlGgVS75oFkdAkcQ4fjjrA3V9lChoBmgJaA9DCFwf1hu1j3FAlIaUUpRoFU27A2gWR0CRxSOy3Td+dX2UKGgGaAloD0MInfUpx+R1Z0CUhpRSlGgVTegDaBZHQJHL/I4lyBF1fZQoaAZoCWgPQwidEDroEgNgQJSGlFKUaBVN6ANoFkdAkc2Z8KG+K3V9lChoBmgJaA9DCJUNayqL/2NAlIaUUpRoFU3oA2gWR0CRze8uSOindX2UKGgGaAloD0MIvqJbr+mHYUCUhpRSlGgVTegDaBZHQJHP5KL876p1fZQoaAZoCWgPQwieeTnsvl1FQJSGlFKUaBVL02gWR0CR0UOqNp/PdX2UKGgGaAloD0MIk8X9R6Y9ZUCUhpRSlGgVTegDaBZHQJHSkVwgkkd1fZQoaAZoCWgPQwiWW1oNiYZiQJSGlFKUaBVN6ANoFkdAkdMOq7yxzXV9lChoBmgJaA9DCHBDjNe8lWFAlIaUUpRoFU3oA2gWR0CR1jsHjZL7dX2UKGgGaAloD0MIyhe0kMAocUCUhpRSlGgVTXIBaBZHQJHYGPmxMWZ1fZQoaAZoCWgPQwh/Tdaoh8ttQJSGlFKUaBVNMgNoFkdAkeFHi704BHV9lChoBmgJaA9DCN8WLNWF9mZAlIaUUpRoFU3oA2gWR0CR4VokRjBmdX2UKGgGaAloD0MIQdMSK6NVY0CUhpRSlGgVTegDaBZHQJIC2mJm/WV1fZQoaAZoCWgPQwhnmNpSBzJgQJSGlFKUaBVN6ANoFkdAkgUDNdJJ5HV9lChoBmgJaA9DCCeIug/ACG9AlIaUUpRoFU1VA2gWR0CSBtp5/smfdX2UKGgGaAloD0MICfmgZzPdYUCUhpRSlGgVTegDaBZHQJIK6eTV2A51fZQoaAZoCWgPQwg34V6ZN0lwQJSGlFKUaBVN6gJoFkdAkguvMKTjenV9lChoBmgJaA9DCDeKrDUUIGdAlIaUUpRoFU3oA2gWR0CSET5+pfhNdX2UKGgGaAloD0MI68cm+RHMbUCUhpRSlGgVTSMBaBZHQJIWggRsdkt1fZQoaAZoCWgPQwiKWwUx0AxkQJSGlFKUaBVN6ANoFkdAkhwT8+A3DXV9lChoBmgJaA9DCJOKxtpfemZAlIaUUpRoFU3oA2gWR0CSHGHn2ZiNdX2UKGgGaAloD0MIMErQX+jvZUCUhpRSlGgVTegDaBZHQJIeMIa99MN1fZQoaAZoCWgPQwghy4KJP3JlQJSGlFKUaBVN6ANoFkdAkh+dFKCg9XV9lChoBmgJaA9DCLKd76eG7XBAlIaUUpRoFU15AWgWR0CSIIkbPyCndX2UKGgGaAloD0MI9RCN7qCHZUCUhpRSlGgVTegDaBZHQJIg4jKPn0V1fZQoaAZoCWgPQwgPKQZINCllQJSGlFKUaBVN6ANoFkdAkiFVlK9PDnV9lChoBmgJaA9DCNTS3Arhn2xAlIaUUpRoFU3vAmgWR0CSInL5hz/7dX2UKGgGaAloD0MIbLBwkuYEXECUhpRSlGgVTegDaBZHQJIka1stTUB1fZQoaAZoCWgPQwjGw3sOLARlQJSGlFKUaBVN6ANoFkdAkiYfTkQwsXV9lChoBmgJaA9DCJoiwOmdOHBAlIaUUpRoFU2IAmgWR0CSJyEidJ8OdX2UKGgGaAloD0MIFt16TQ/NY0CUhpRSlGgVTegDaBZHQJIuMXVLBbh1fZQoaAZoCWgPQwjRdHYyONVrQJSGlFKUaBVNkgFoFkdAkkgdxlxwQ3V9lChoBmgJaA9DCPJc34eDxW9AlIaUUpRoFU0/AWgWR0CSSDkmx+rmdX2UKGgGaAloD0MImpmZmRkMY0CUhpRSlGgVTegDaBZHQJJRU9t/Fzd1fZQoaAZoCWgPQwjaWfROhURvQJSGlFKUaBVNEgJoFkdAklIEQK8cuXV9lChoBmgJaA9DCCmzQSYZ22NAlIaUUpRoFU3oA2gWR0CSVZXDWK/EdX2UKGgGaAloD0MIo68gzdh0bUCUhpRSlGgVTQcDaBZHQJJYyteUpux1fZQoaAZoCWgPQwgceSCyyGJnQJSGlFKUaBVN6ANoFkdAklq6DoQnQnV9lChoBmgJaA9DCAJIbeJk/2JAlIaUUpRoFU3oA2gWR0CSX5Rp1zQvdX2UKGgGaAloD0MI6NhBJe7bcUCUhpRSlGgVTfkCaBZHQJJjGGgzxgB1fZQoaAZoCWgPQwj3rdaJy4hxQJSGlFKUaBVN8gFoFkdAkmP2jsUqQXV9lChoBmgJaA9DCDljmBO0O2RAlIaUUpRoFU3oA2gWR0CSZKflIVdpdX2UKGgGaAloD0MIbmsLz0vvcECUhpRSlGgVTckDaBZHQJJlFDOTq0N1fZQoaAZoCWgPQwg8hPHTOCBuQJSGlFKUaBVNRgFoFkdAkmbSLZSNwXV9lChoBmgJaA9DCPomTYOigmRAlIaUUpRoFU3oA2gWR0CSZ7I2OyVwdX2UKGgGaAloD0MIAJATJoz8YkCUhpRSlGgVTegDaBZHQJJoxI4EOiF1fZQoaAZoCWgPQwi2LF+X4XNmQJSGlFKUaBVN6ANoFkdAkmk4t+TePHV9lChoBmgJaA9DCB40u+6tr2NAlIaUUpRoFU3oA2gWR0CSbvMPjGT+dX2UKGgGaAloD0MIteGwNPAVcECUhpRSlGgVTY4BaBZHQJJyzfoA4n51fZQoaAZoCWgPQwiq9BPOLhhxQJSGlFKUaBVNUAFoFkdAknSo+r2g4HV9lChoBmgJaA9DCFIMkGgCZWBAlIaUUpRoFU3oA2gWR0CSdvC+10DEdX2UKGgGaAloD0MIYvVHGEYfcUCUhpRSlGgVTUoBaBZHQJJ6bXarWAh1fZQoaAZoCWgPQwgL73IRH+VwQJSGlFKUaBVNswNoFkdAko2hqwhW53V9lChoBmgJaA9DCAk3GVXGJHFAlIaUUpRoFU3CAWgWR0CSjv6vJRwZdX2UKGgGaAloD0MIMgVrnE0vckCUhpRSlGgVTTUDaBZHQJKPSDvmYBx1fZQoaAZoCWgPQwhyUwPNZzxuQJSGlFKUaBVNuwJoFkdAkpAEtmL9/HV9lChoBmgJaA9DCLmq7Lvio3BAlIaUUpRoFU3IAWgWR0CSkf5k9U0fdX2UKGgGaAloD0MIwOldvF+EcECUhpRSlGgVTXwBaBZHQJKV+Y0EX+F1fZQoaAZoCWgPQwjFjsah/vZsQJSGlFKUaBVNUwJoFkdAkpdIeLehwnV9lChoBmgJaA9DCOcdp+jIQWlAlIaUUpRoFU3oA2gWR0CSl9umaYu1dX2UKGgGaAloD0MIbjDUYYUCUUCUhpRSlGgVS8RoFkdAkpqei8FpwnV9lChoBmgJaA9DCOun/6x5jnFAlIaUUpRoFU3XAWgWR0CSnV4u9OARdX2UKGgGaAloD0MIP1jGhu76bUCUhpRSlGgVTbUBaBZHQJKfNuejEeh1fZQoaAZoCWgPQwhgIXNlUOxgQJSGlFKUaBVN6ANoFkdAkp+MI7eVLXV9lChoBmgJaA9DCLMJMCx/4nBAlIaUUpRoFU2UAWgWR0CSogSqEOAidX2UKGgGaAloD0MIbLJGPUROcECUhpRSlGgVTdYBaBZHQJKjqw1R+Bp1fZQoaAZoCWgPQwhyUMJMWyBvQJSGlFKUaBVN2gFoFkdAkqUJs0pEyHV9lChoBmgJaA9DCJFfP8SGLm1AlIaUUpRoFU1TAWgWR0CSpd3sXzlLdX2UKGgGaAloD0MI5gXYRydBZkCUhpRSlGgVTegDaBZHQJKmu6GxlhB1fZQoaAZoCWgPQwgjEoWW9XFzQJSGlFKUaBVNSQFoFkdAkqd33QD3d3V9lChoBmgJaA9DCHi4HRoWUmJAlIaUUpRoFU3oA2gWR0CSp42qDK5kdX2UKGgGaAloD0MIxNLAj2rMckCUhpRSlGgVTZkCaBZHQJKoNaHKwIN1fZQoaAZoCWgPQwjcEOM1r+1xQJSGlFKUaBVNFgJoFkdAkqiqWom5UnV9lChoBmgJaA9DCAk3GVWGmSjAlIaUUpRoFUu6aBZHQJKqOmEXcg11fZQoaAZoCWgPQwird7gdmoFjQJSGlFKUaBVN6ANoFkdAkqvFrRBu43V9lChoBmgJaA9DCAUZARVOznFAlIaUUpRoFU2RAWgWR0CSrPvIOpbVdX2UKGgGaAloD0MITDYebDEBbkCUhpRSlGgVTVMBaBZHQJKulgG8mKJ1fZQoaAZoCWgPQwgAx549l+tCQJSGlFKUaBVLy2gWR0CSr+mp2ll9dX2UKGgGaAloD0MIVu9wO7Rdb0CUhpRSlGgVTdUDaBZHQJK9JPbfxc51fZQoaAZoCWgPQwgH0sWmFVJxQJSGlFKUaBVNQwFoFkdAkr8oBaLXMHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87f91ea32dc7060ddb4cb5babcbffc0a74f21042ef0fab33061f7e2713dcd9a8
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8befe204e0144004e8acd9b1a81fb2832f9b4f73aeb1665152384c3f290b631d
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (215 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.56487945036844, "std_reward": 20.59395779156083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T15:04:19.280883"}