Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,51 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
# Diffusers API of Transparent Image Layer Diffusion using Latent Transparency
|
5 |
+
Create transparent image with Diffusers!
|
6 |
+
|
7 |
+
Please check the Github repo [here](https://github.com/rootonchair/diffuser_layerdiffuse)
|
8 |
+
|
9 |
+
This is a port to Diffuser from original [SD Webui's Layer Diffusion](https://github.com/layerdiffusion/sd-forge-layerdiffuse) to extend the ability to generate transparent image with your favorite API
|
10 |
+
|
11 |
+
|
12 |
+
Paper: [Transparent Image Layer Diffusion using Latent Transparency](https://arxiv.org/abs/2402.17113)
|
13 |
+
## Quickstart
|
14 |
+
|
15 |
+
Generate transparent image with SD1.5 models. In this example, we will use [digiplay/Juggernaut_final](https://huggingface.co/digiplay/Juggernaut_final) as the base model
|
16 |
+
|
17 |
+
```python
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
from safetensors.torch import load_file
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from diffusers import StableDiffusionPipeline
|
23 |
+
|
24 |
+
from models import TransparentVAEDecoder
|
25 |
+
from loaders import load_lora_to_unet
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
if __name__ == "__main__":
|
30 |
+
|
31 |
+
model_path = hf_hub_download(
|
32 |
+
'LayerDiffusion/layerdiffusion-v1',
|
33 |
+
'layer_sd15_vae_transparent_decoder.safetensors',
|
34 |
+
)
|
35 |
+
|
36 |
+
vae_transparent_decoder = TransparentVAEDecoder.from_pretrained("digiplay/Juggernaut_final", subfolder="vae", torch_dtype=torch.float16).to("cuda")
|
37 |
+
vae_transparent_decoder.set_transparent_decoder(load_file(model_path))
|
38 |
+
|
39 |
+
pipeline = StableDiffusionPipeline.from_pretrained("digiplay/Juggernaut_final", vae=vae_transparent_decoder, torch_dtype=torch.float16, safety_checker=None).to("cuda")
|
40 |
+
|
41 |
+
model_path = hf_hub_download(
|
42 |
+
'LayerDiffusion/layerdiffusion-v1',
|
43 |
+
'layer_sd15_transparent_attn.safetensors'
|
44 |
+
)
|
45 |
+
|
46 |
+
load_lora_to_unet(pipeline.unet, model_path, frames=1)
|
47 |
+
|
48 |
+
image = pipeline(prompt="a dog sitting in room, high quality",
|
49 |
+
width=512, height=512,
|
50 |
+
num_images_per_prompt=1, return_dict=False)[0]
|
51 |
+
```
|