|
2023-04-11 07:52:01,240 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:52:01,244 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): RobertaModel( |
|
(embeddings): RobertaEmbeddings( |
|
(word_embeddings): Embedding(50263, 768) |
|
(position_embeddings): Embedding(514, 768, padding_idx=1) |
|
(token_type_embeddings): Embedding(1, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): RobertaEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x RobertaLayer( |
|
(attention): RobertaAttention( |
|
(self): RobertaSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): RobertaSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): RobertaIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): RobertaOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): RobertaPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=17, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-04-11 07:52:01,245 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:52:01,247 Corpus: "Corpus: 12554 train + 4549 dev + 4505 test sentences" |
|
2023-04-11 07:52:01,248 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:52:01,250 Parameters: |
|
2023-04-11 07:52:01,252 - learning_rate: "0.000050" |
|
2023-04-11 07:52:01,253 - mini_batch_size: "4" |
|
2023-04-11 07:52:01,254 - patience: "3" |
|
2023-04-11 07:52:01,256 - anneal_factor: "0.5" |
|
2023-04-11 07:52:01,257 - max_epochs: "10" |
|
2023-04-11 07:52:01,258 - shuffle: "True" |
|
2023-04-11 07:52:01,259 - train_with_dev: "True" |
|
2023-04-11 07:52:01,260 - batch_growth_annealing: "False" |
|
2023-04-11 07:52:01,262 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:52:01,264 Model training base path: "CREBMSP_results" |
|
2023-04-11 07:52:01,265 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:52:01,266 Device: cuda |
|
2023-04-11 07:52:01,267 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:52:01,269 Embeddings storage mode: none |
|
2023-04-11 07:52:01,270 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:52:31,267 epoch 1 - iter 427/4276 - loss 1.87909215 - time (sec): 30.00 - samples/sec: 1446.87 - lr: 0.000005 |
|
2023-04-11 07:52:57,233 epoch 1 - iter 854/4276 - loss 1.32536726 - time (sec): 55.96 - samples/sec: 1540.07 - lr: 0.000010 |
|
2023-04-11 07:53:22,647 epoch 1 - iter 1281/4276 - loss 1.12000789 - time (sec): 81.38 - samples/sec: 1412.04 - lr: 0.000015 |
|
2023-04-11 07:53:48,118 epoch 1 - iter 1708/4276 - loss 1.00885882 - time (sec): 106.85 - samples/sec: 1268.03 - lr: 0.000020 |
|
2023-04-11 07:54:13,232 epoch 1 - iter 2135/4276 - loss 0.90793861 - time (sec): 131.96 - samples/sec: 1192.25 - lr: 0.000025 |
|
2023-04-11 07:54:38,606 epoch 1 - iter 2562/4276 - loss 0.83160292 - time (sec): 157.33 - samples/sec: 1137.84 - lr: 0.000030 |
|
2023-04-11 07:55:03,961 epoch 1 - iter 2989/4276 - loss 0.76685321 - time (sec): 182.69 - samples/sec: 1097.97 - lr: 0.000035 |
|
2023-04-11 07:55:29,860 epoch 1 - iter 3416/4276 - loss 0.68896532 - time (sec): 208.59 - samples/sec: 1129.83 - lr: 0.000040 |
|
2023-04-11 07:55:55,140 epoch 1 - iter 3843/4276 - loss 0.64980627 - time (sec): 233.87 - samples/sec: 1106.99 - lr: 0.000045 |
|
2023-04-11 07:56:20,160 epoch 1 - iter 4270/4276 - loss 0.62203959 - time (sec): 258.89 - samples/sec: 1070.06 - lr: 0.000050 |
|
2023-04-11 07:56:20,508 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:56:20,510 EPOCH 1 done: loss 0.6216 - lr 0.000050 |
|
2023-04-11 07:56:22,961 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 07:56:48,475 epoch 2 - iter 427/4276 - loss 0.20826646 - time (sec): 25.51 - samples/sec: 1089.16 - lr: 0.000049 |
|
2023-04-11 07:57:14,086 epoch 2 - iter 854/4276 - loss 0.19309402 - time (sec): 51.12 - samples/sec: 1086.38 - lr: 0.000049 |
|
2023-04-11 07:57:39,771 epoch 2 - iter 1281/4276 - loss 0.19314959 - time (sec): 76.81 - samples/sec: 1082.26 - lr: 0.000048 |
|
2023-04-11 07:58:05,813 epoch 2 - iter 1708/4276 - loss 0.18982202 - time (sec): 102.85 - samples/sec: 1076.96 - lr: 0.000048 |
|
2023-04-11 07:58:31,469 epoch 2 - iter 2135/4276 - loss 0.18835936 - time (sec): 128.51 - samples/sec: 1075.89 - lr: 0.000047 |
|
2023-04-11 07:58:57,254 epoch 2 - iter 2562/4276 - loss 0.18721166 - time (sec): 154.29 - samples/sec: 1077.05 - lr: 0.000047 |
|
2023-04-11 07:59:22,930 epoch 2 - iter 2989/4276 - loss 0.18831955 - time (sec): 179.97 - samples/sec: 1077.28 - lr: 0.000046 |
|
2023-04-11 07:59:48,986 epoch 2 - iter 3416/4276 - loss 0.18784028 - time (sec): 206.02 - samples/sec: 1073.12 - lr: 0.000046 |
|
2023-04-11 08:00:14,438 epoch 2 - iter 3843/4276 - loss 0.18631720 - time (sec): 231.48 - samples/sec: 1075.27 - lr: 0.000045 |
|
2023-04-11 08:00:40,029 epoch 2 - iter 4270/4276 - loss 0.18545112 - time (sec): 257.07 - samples/sec: 1077.05 - lr: 0.000044 |
|
2023-04-11 08:00:40,402 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:00:40,404 EPOCH 2 done: loss 0.1853 - lr 0.000044 |
|
2023-04-11 08:00:43,081 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:01:08,689 epoch 3 - iter 427/4276 - loss 0.10756568 - time (sec): 25.61 - samples/sec: 1077.73 - lr: 0.000044 |
|
2023-04-11 08:01:34,223 epoch 3 - iter 854/4276 - loss 0.11256584 - time (sec): 51.14 - samples/sec: 1067.61 - lr: 0.000043 |
|
2023-04-11 08:01:59,709 epoch 3 - iter 1281/4276 - loss 0.11766577 - time (sec): 76.63 - samples/sec: 1063.30 - lr: 0.000043 |
|
2023-04-11 08:02:25,508 epoch 3 - iter 1708/4276 - loss 0.11967896 - time (sec): 102.42 - samples/sec: 1069.08 - lr: 0.000042 |
|
2023-04-11 08:02:51,126 epoch 3 - iter 2135/4276 - loss 0.12272097 - time (sec): 128.04 - samples/sec: 1068.42 - lr: 0.000042 |
|
2023-04-11 08:03:16,785 epoch 3 - iter 2562/4276 - loss 0.12613423 - time (sec): 153.70 - samples/sec: 1070.88 - lr: 0.000041 |
|
2023-04-11 08:03:42,674 epoch 3 - iter 2989/4276 - loss 0.12434777 - time (sec): 179.59 - samples/sec: 1073.70 - lr: 0.000041 |
|
2023-04-11 08:04:08,548 epoch 3 - iter 3416/4276 - loss 0.12561538 - time (sec): 205.46 - samples/sec: 1076.38 - lr: 0.000040 |
|
2023-04-11 08:04:34,388 epoch 3 - iter 3843/4276 - loss 0.12639782 - time (sec): 231.31 - samples/sec: 1077.42 - lr: 0.000039 |
|
2023-04-11 08:05:00,280 epoch 3 - iter 4270/4276 - loss 0.12565441 - time (sec): 257.20 - samples/sec: 1077.04 - lr: 0.000039 |
|
2023-04-11 08:05:00,628 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:05:00,630 EPOCH 3 done: loss 0.1255 - lr 0.000039 |
|
2023-04-11 08:05:03,316 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:05:29,064 epoch 4 - iter 427/4276 - loss 0.07937009 - time (sec): 25.75 - samples/sec: 1093.59 - lr: 0.000038 |
|
2023-04-11 08:05:55,266 epoch 4 - iter 854/4276 - loss 0.08553328 - time (sec): 51.95 - samples/sec: 1096.96 - lr: 0.000038 |
|
2023-04-11 08:06:21,370 epoch 4 - iter 1281/4276 - loss 0.08226230 - time (sec): 78.05 - samples/sec: 1077.95 - lr: 0.000037 |
|
2023-04-11 08:06:47,652 epoch 4 - iter 1708/4276 - loss 0.08759891 - time (sec): 104.33 - samples/sec: 1073.69 - lr: 0.000037 |
|
2023-04-11 08:07:13,692 epoch 4 - iter 2135/4276 - loss 0.08892818 - time (sec): 130.37 - samples/sec: 1075.03 - lr: 0.000036 |
|
2023-04-11 08:07:39,673 epoch 4 - iter 2562/4276 - loss 0.09054387 - time (sec): 156.36 - samples/sec: 1070.47 - lr: 0.000036 |
|
2023-04-11 08:08:05,603 epoch 4 - iter 2989/4276 - loss 0.09010262 - time (sec): 182.29 - samples/sec: 1068.84 - lr: 0.000035 |
|
2023-04-11 08:08:31,466 epoch 4 - iter 3416/4276 - loss 0.09103521 - time (sec): 208.15 - samples/sec: 1064.43 - lr: 0.000034 |
|
2023-04-11 08:08:57,317 epoch 4 - iter 3843/4276 - loss 0.09209534 - time (sec): 234.00 - samples/sec: 1065.67 - lr: 0.000034 |
|
2023-04-11 08:09:23,268 epoch 4 - iter 4270/4276 - loss 0.09259541 - time (sec): 259.95 - samples/sec: 1065.57 - lr: 0.000033 |
|
2023-04-11 08:09:23,618 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:09:23,619 EPOCH 4 done: loss 0.0926 - lr 0.000033 |
|
2023-04-11 08:09:26,348 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:09:52,083 epoch 5 - iter 427/4276 - loss 0.05592755 - time (sec): 25.73 - samples/sec: 1089.14 - lr: 0.000033 |
|
2023-04-11 08:10:17,950 epoch 5 - iter 854/4276 - loss 0.06527284 - time (sec): 51.60 - samples/sec: 1056.57 - lr: 0.000032 |
|
2023-04-11 08:10:43,825 epoch 5 - iter 1281/4276 - loss 0.06153976 - time (sec): 77.47 - samples/sec: 1056.26 - lr: 0.000032 |
|
2023-04-11 08:11:09,692 epoch 5 - iter 1708/4276 - loss 0.06749125 - time (sec): 103.34 - samples/sec: 1063.57 - lr: 0.000031 |
|
2023-04-11 08:11:35,614 epoch 5 - iter 2135/4276 - loss 0.06839364 - time (sec): 129.26 - samples/sec: 1068.27 - lr: 0.000031 |
|
2023-04-11 08:12:01,303 epoch 5 - iter 2562/4276 - loss 0.06963346 - time (sec): 154.95 - samples/sec: 1066.16 - lr: 0.000030 |
|
2023-04-11 08:12:27,328 epoch 5 - iter 2989/4276 - loss 0.06933764 - time (sec): 180.98 - samples/sec: 1070.11 - lr: 0.000029 |
|
2023-04-11 08:12:53,272 epoch 5 - iter 3416/4276 - loss 0.06831147 - time (sec): 206.92 - samples/sec: 1068.24 - lr: 0.000029 |
|
2023-04-11 08:13:19,128 epoch 5 - iter 3843/4276 - loss 0.06885265 - time (sec): 232.78 - samples/sec: 1069.77 - lr: 0.000028 |
|
2023-04-11 08:13:44,881 epoch 5 - iter 4270/4276 - loss 0.06861645 - time (sec): 258.53 - samples/sec: 1071.43 - lr: 0.000028 |
|
2023-04-11 08:13:45,250 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:13:45,251 EPOCH 5 done: loss 0.0687 - lr 0.000028 |
|
2023-04-11 08:13:47,855 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:14:13,715 epoch 6 - iter 427/4276 - loss 0.04965217 - time (sec): 25.86 - samples/sec: 1047.26 - lr: 0.000027 |
|
2023-04-11 08:14:39,500 epoch 6 - iter 854/4276 - loss 0.05200554 - time (sec): 51.64 - samples/sec: 1043.00 - lr: 0.000027 |
|
2023-04-11 08:15:05,494 epoch 6 - iter 1281/4276 - loss 0.04883649 - time (sec): 77.63 - samples/sec: 1053.18 - lr: 0.000026 |
|
2023-04-11 08:15:31,675 epoch 6 - iter 1708/4276 - loss 0.04860057 - time (sec): 103.82 - samples/sec: 1062.16 - lr: 0.000026 |
|
2023-04-11 08:15:57,397 epoch 6 - iter 2135/4276 - loss 0.04686293 - time (sec): 129.54 - samples/sec: 1064.28 - lr: 0.000025 |
|
2023-04-11 08:16:23,066 epoch 6 - iter 2562/4276 - loss 0.04688968 - time (sec): 155.21 - samples/sec: 1075.47 - lr: 0.000024 |
|
2023-04-11 08:16:48,784 epoch 6 - iter 2989/4276 - loss 0.04738732 - time (sec): 180.92 - samples/sec: 1076.18 - lr: 0.000024 |
|
2023-04-11 08:17:14,472 epoch 6 - iter 3416/4276 - loss 0.04857132 - time (sec): 206.61 - samples/sec: 1078.35 - lr: 0.000023 |
|
2023-04-11 08:17:40,237 epoch 6 - iter 3843/4276 - loss 0.04764392 - time (sec): 232.38 - samples/sec: 1078.25 - lr: 0.000023 |
|
2023-04-11 08:18:05,989 epoch 6 - iter 4270/4276 - loss 0.04784009 - time (sec): 258.13 - samples/sec: 1072.85 - lr: 0.000022 |
|
2023-04-11 08:18:06,327 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:18:06,329 EPOCH 6 done: loss 0.0478 - lr 0.000022 |
|
2023-04-11 08:18:08,965 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:18:34,621 epoch 7 - iter 427/4276 - loss 0.04169676 - time (sec): 25.65 - samples/sec: 1078.45 - lr: 0.000022 |
|
2023-04-11 08:19:00,288 epoch 7 - iter 854/4276 - loss 0.03889063 - time (sec): 51.32 - samples/sec: 1079.22 - lr: 0.000021 |
|
2023-04-11 08:19:25,845 epoch 7 - iter 1281/4276 - loss 0.03600230 - time (sec): 76.88 - samples/sec: 1074.59 - lr: 0.000021 |
|
2023-04-11 08:19:51,633 epoch 7 - iter 1708/4276 - loss 0.03408375 - time (sec): 102.67 - samples/sec: 1069.48 - lr: 0.000020 |
|
2023-04-11 08:20:17,371 epoch 7 - iter 2135/4276 - loss 0.03496732 - time (sec): 128.40 - samples/sec: 1071.00 - lr: 0.000019 |
|
2023-04-11 08:20:43,117 epoch 7 - iter 2562/4276 - loss 0.03456081 - time (sec): 154.15 - samples/sec: 1076.58 - lr: 0.000019 |
|
2023-04-11 08:21:08,941 epoch 7 - iter 2989/4276 - loss 0.03472130 - time (sec): 179.97 - samples/sec: 1080.88 - lr: 0.000018 |
|
2023-04-11 08:21:34,633 epoch 7 - iter 3416/4276 - loss 0.03388419 - time (sec): 205.67 - samples/sec: 1082.92 - lr: 0.000018 |
|
2023-04-11 08:22:00,268 epoch 7 - iter 3843/4276 - loss 0.03321656 - time (sec): 231.30 - samples/sec: 1079.07 - lr: 0.000017 |
|
2023-04-11 08:22:26,001 epoch 7 - iter 4270/4276 - loss 0.03294924 - time (sec): 257.03 - samples/sec: 1077.38 - lr: 0.000017 |
|
2023-04-11 08:22:26,358 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:22:26,359 EPOCH 7 done: loss 0.0329 - lr 0.000017 |
|
2023-04-11 08:22:28,991 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:22:54,759 epoch 8 - iter 427/4276 - loss 0.01991391 - time (sec): 25.77 - samples/sec: 1091.09 - lr: 0.000016 |
|
2023-04-11 08:23:20,455 epoch 8 - iter 854/4276 - loss 0.02008748 - time (sec): 51.46 - samples/sec: 1087.44 - lr: 0.000016 |
|
2023-04-11 08:23:46,301 epoch 8 - iter 1281/4276 - loss 0.02071964 - time (sec): 77.31 - samples/sec: 1091.13 - lr: 0.000015 |
|
2023-04-11 08:24:12,005 epoch 8 - iter 1708/4276 - loss 0.02060885 - time (sec): 103.01 - samples/sec: 1086.76 - lr: 0.000014 |
|
2023-04-11 08:24:37,602 epoch 8 - iter 2135/4276 - loss 0.02230171 - time (sec): 128.61 - samples/sec: 1081.19 - lr: 0.000014 |
|
2023-04-11 08:25:03,104 epoch 8 - iter 2562/4276 - loss 0.02194943 - time (sec): 154.11 - samples/sec: 1081.02 - lr: 0.000013 |
|
2023-04-11 08:25:28,792 epoch 8 - iter 2989/4276 - loss 0.02166994 - time (sec): 179.80 - samples/sec: 1081.85 - lr: 0.000013 |
|
2023-04-11 08:25:54,314 epoch 8 - iter 3416/4276 - loss 0.02079076 - time (sec): 205.32 - samples/sec: 1078.58 - lr: 0.000012 |
|
2023-04-11 08:26:19,932 epoch 8 - iter 3843/4276 - loss 0.02085187 - time (sec): 230.94 - samples/sec: 1077.62 - lr: 0.000012 |
|
2023-04-11 08:26:45,880 epoch 8 - iter 4270/4276 - loss 0.02104430 - time (sec): 256.89 - samples/sec: 1077.94 - lr: 0.000011 |
|
2023-04-11 08:26:46,229 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:26:46,231 EPOCH 8 done: loss 0.0210 - lr 0.000011 |
|
2023-04-11 08:26:48,847 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:27:14,788 epoch 9 - iter 427/4276 - loss 0.01704588 - time (sec): 25.94 - samples/sec: 1092.91 - lr: 0.000011 |
|
2023-04-11 08:27:40,564 epoch 9 - iter 854/4276 - loss 0.01373665 - time (sec): 51.72 - samples/sec: 1083.59 - lr: 0.000010 |
|
2023-04-11 08:28:06,247 epoch 9 - iter 1281/4276 - loss 0.01269875 - time (sec): 77.40 - samples/sec: 1099.73 - lr: 0.000009 |
|
2023-04-11 08:28:31,749 epoch 9 - iter 1708/4276 - loss 0.01307406 - time (sec): 102.90 - samples/sec: 1092.49 - lr: 0.000009 |
|
2023-04-11 08:28:57,340 epoch 9 - iter 2135/4276 - loss 0.01330464 - time (sec): 128.49 - samples/sec: 1083.63 - lr: 0.000008 |
|
2023-04-11 08:29:23,005 epoch 9 - iter 2562/4276 - loss 0.01323370 - time (sec): 154.16 - samples/sec: 1084.86 - lr: 0.000008 |
|
2023-04-11 08:29:48,714 epoch 9 - iter 2989/4276 - loss 0.01356354 - time (sec): 179.87 - samples/sec: 1081.40 - lr: 0.000007 |
|
2023-04-11 08:30:14,522 epoch 9 - iter 3416/4276 - loss 0.01333538 - time (sec): 205.67 - samples/sec: 1080.12 - lr: 0.000007 |
|
2023-04-11 08:30:40,139 epoch 9 - iter 3843/4276 - loss 0.01382847 - time (sec): 231.29 - samples/sec: 1076.78 - lr: 0.000006 |
|
2023-04-11 08:31:05,963 epoch 9 - iter 4270/4276 - loss 0.01417043 - time (sec): 257.11 - samples/sec: 1077.64 - lr: 0.000006 |
|
2023-04-11 08:31:06,310 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:31:06,312 EPOCH 9 done: loss 0.0142 - lr 0.000006 |
|
2023-04-11 08:31:08,911 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:31:34,627 epoch 10 - iter 427/4276 - loss 0.00788266 - time (sec): 25.71 - samples/sec: 1100.38 - lr: 0.000005 |
|
2023-04-11 08:32:00,278 epoch 10 - iter 854/4276 - loss 0.00916004 - time (sec): 51.37 - samples/sec: 1082.68 - lr: 0.000004 |
|
2023-04-11 08:32:25,952 epoch 10 - iter 1281/4276 - loss 0.00947741 - time (sec): 77.04 - samples/sec: 1084.11 - lr: 0.000004 |
|
2023-04-11 08:32:51,619 epoch 10 - iter 1708/4276 - loss 0.00922028 - time (sec): 102.71 - samples/sec: 1082.23 - lr: 0.000003 |
|
2023-04-11 08:33:17,397 epoch 10 - iter 2135/4276 - loss 0.00924503 - time (sec): 128.48 - samples/sec: 1087.21 - lr: 0.000003 |
|
2023-04-11 08:33:43,209 epoch 10 - iter 2562/4276 - loss 0.00928543 - time (sec): 154.30 - samples/sec: 1085.54 - lr: 0.000002 |
|
2023-04-11 08:34:09,247 epoch 10 - iter 2989/4276 - loss 0.00893538 - time (sec): 180.33 - samples/sec: 1082.30 - lr: 0.000002 |
|
2023-04-11 08:34:35,096 epoch 10 - iter 3416/4276 - loss 0.00939691 - time (sec): 206.18 - samples/sec: 1079.56 - lr: 0.000001 |
|
2023-04-11 08:35:01,291 epoch 10 - iter 3843/4276 - loss 0.00881917 - time (sec): 232.38 - samples/sec: 1073.84 - lr: 0.000001 |
|
2023-04-11 08:35:27,885 epoch 10 - iter 4270/4276 - loss 0.00882288 - time (sec): 258.97 - samples/sec: 1069.59 - lr: 0.000000 |
|
2023-04-11 08:35:28,233 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:35:28,234 EPOCH 10 done: loss 0.0088 - lr 0.000000 |
|
2023-04-11 08:35:36,527 ---------------------------------------------------------------------------------------------------- |
|
2023-04-11 08:35:36,530 Testing using last state of model ... |
|
2023-04-11 08:36:06,557 Evaluating as a multi-label problem: False |
|
2023-04-11 08:36:06,627 0.877 0.884 0.8805 0.7929 |
|
2023-04-11 08:36:06,629 |
|
Results: |
|
- F-score (micro) 0.8805 |
|
- F-score (macro) 0.8612 |
|
- Accuracy 0.7929 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
PROC 0.8581 0.8811 0.8695 3364 |
|
DISO 0.8911 0.8908 0.8910 2472 |
|
CHEM 0.9091 0.9073 0.9082 1565 |
|
ANAT 0.8082 0.7468 0.7763 316 |
|
|
|
micro avg 0.8770 0.8840 0.8805 7717 |
|
macro avg 0.8666 0.8565 0.8612 7717 |
|
weighted avg 0.8770 0.8840 0.8804 7717 |
|
|
|
2023-04-11 08:36:06,629 ---------------------------------------------------------------------------------------------------- |
|
|