File size: 2,366 Bytes
2275ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: Check_Model_2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice
      type: common_voice
      config: id
      split: test
      args: id
    metrics:
    - name: Wer
      type: wer
      value: 0.2728883087823979
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Check_Model_2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3499
- Wer: 0.2729
- Cer: 0.0673

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.8708        | 3.23  | 400  | 0.7345          | 0.7259 | 0.2034 |
| 0.4247        | 6.45  | 800  | 0.4128          | 0.4268 | 0.1102 |
| 0.2047        | 9.68  | 1200 | 0.3726          | 0.3795 | 0.0930 |
| 0.1422        | 12.9  | 1600 | 0.3690          | 0.3514 | 0.0884 |
| 0.1139        | 16.13 | 2000 | 0.3811          | 0.3160 | 0.0794 |
| 0.089         | 19.35 | 2400 | 0.3650          | 0.2895 | 0.0731 |
| 0.0709        | 22.58 | 2800 | 0.3629          | 0.2944 | 0.0727 |
| 0.0594        | 25.81 | 3200 | 0.3538          | 0.2779 | 0.0692 |
| 0.0478        | 29.03 | 3600 | 0.3499          | 0.2729 | 0.0673 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 1.18.3
- Tokenizers 0.13.3