--- base_model: hackathon-pln-es/paraphrase-spanish-distilroberta library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: GESTIÓN DE LA PLANEACIÓN INSTITUCIONALACTIVIDADES TRANSVERSALES PARA EL PROCESO DE PLANEACIÓN INSTITUCIONALResporder las solicitudes de información de terceros o el mismo instituto (nivel de complejidad medio) - text: GESTIÓN DE LA PLANEACIÓN INSTITUCIONALACTIVIDADES TRANSVERSALES PARA EL PROCESO DE PLANEACIÓN INSTITUCIONALRegistrar en el sistema de control la entrega del documento solicitado. - text: GESTIÓN DEL SERVICIO PERICIALFÍSICA - TRÁMITE DE SOLICITUDES Y GENERACIÓN Y ENVÍO DE INFORMES PERICIALES DEL SERVICIO DE FÍSICA FORENSEDigitalizar el expediente - text: GESTIÓN DEL SERVICIO PERICIALANTROPOLOGÍA - ANÁLISIS ANTROPOLÓGICO FORENSERealizar la toma de muestras de la escrictura osea con la anuencia del Médico. - text: GESTIÓN DE LA PLANEACIÓN INSTITUCIONALACTIVIDADES TRANSVERSALES PARA EL PROCESO DE PLANEACIÓN INSTITUCIONALRealizar las capacitaciones en sistemas y plataformas requeridas por las áreas. inference: true model-index: - name: SetFit with hackathon-pln-es/paraphrase-spanish-distilroberta results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.96 name: Accuracy --- # SetFit with hackathon-pln-es/paraphrase-spanish-distilroberta This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [hackathon-pln-es/paraphrase-spanish-distilroberta](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [hackathon-pln-es/paraphrase-spanish-distilroberta](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2.0 | | | 1.0 | | | 0.0 | | | 3.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.96 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("rovargasc/setfit-model_actividadesMedicinaLegalV1") # Run inference preds = model("GESTIÓN DEL SERVICIO PERICIALANTROPOLOGÍA - ANÁLISIS ANTROPOLÓGICO FORENSERealizar la toma de muestras de la escrictura osea con la anuencia del Médico.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 6 | 26.1733 | 65 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 69 | | 1.0 | 79 | | 2.0 | 75 | | 3.0 | 77 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0009 | 1 | 0.1977 | - | | 0.0474 | 50 | 0.0986 | - | | 0.0949 | 100 | 0.0514 | - | | 0.1423 | 150 | 0.0025 | - | | 0.1898 | 200 | 0.0012 | - | | 0.2372 | 250 | 0.0014 | - | | 0.2846 | 300 | 0.0003 | - | | 0.3321 | 350 | 0.0003 | - | | 0.3795 | 400 | 0.0002 | - | | 0.4269 | 450 | 0.0001 | - | | 0.4744 | 500 | 0.0002 | - | | 0.5218 | 550 | 0.0001 | - | | 0.5693 | 600 | 0.0002 | - | | 0.6167 | 650 | 0.0001 | - | | 0.6641 | 700 | 0.0001 | - | | 0.7116 | 750 | 0.0002 | - | | 0.7590 | 800 | 0.0001 | - | | 0.8065 | 850 | 0.0001 | - | | 0.8539 | 900 | 0.0001 | - | | 0.9013 | 950 | 0.0001 | - | | 0.9488 | 1000 | 0.0001 | - | | 0.9962 | 1050 | 0.0001 | - | | 1.0 | 1054 | - | 0.0517 | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.40.0 - PyTorch: 2.1.2 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```