File size: 2,500 Bytes
1cfc280 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral-7B-Instruct-prompt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7B-Instruct-prompt
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0962
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.745 | 0.75 | 100 | 0.8404 |
| 0.5396 | 1.5 | 200 | 0.6313 |
| 0.3702 | 2.26 | 300 | 0.4994 |
| 0.3676 | 3.01 | 400 | 0.4106 |
| 0.3623 | 3.76 | 500 | 0.3409 |
| 0.2239 | 4.51 | 600 | 0.2893 |
| 0.1719 | 5.26 | 700 | 0.2405 |
| 0.1971 | 6.02 | 800 | 0.1866 |
| 0.1446 | 6.77 | 900 | 0.1591 |
| 0.1066 | 7.52 | 1000 | 0.1381 |
| 0.0866 | 8.27 | 1100 | 0.1193 |
| 0.0701 | 9.02 | 1200 | 0.1061 |
| 0.0641 | 9.77 | 1300 | 0.1017 |
| 0.0511 | 10.53 | 1400 | 0.0958 |
| 0.0407 | 11.28 | 1500 | 0.0963 |
| 0.0332 | 12.03 | 1600 | 0.0938 |
| 0.0268 | 12.78 | 1700 | 0.0952 |
| 0.0251 | 13.53 | 1800 | 0.0961 |
| 0.023 | 14.29 | 1900 | 0.0961 |
| 0.0219 | 15.04 | 2000 | 0.0962 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 |