File size: 9,248 Bytes
46455cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:

(1) Export to torchscript model using torch.jit.trace()

./conformer_ctc3/export.py \
  --exp-dir ./conformer_ctc3/exp \
  --lang-dir data/lang_bpe_500 \
  --epoch 20 \
  --avg 10 \
  --jit-trace 1

It will generates the file: `jit_trace.pt`.

(2) Export `model.state_dict()`

./conformer_ctc3/export.py \
  --exp-dir ./conformer_ctc3/exp \
  --lang-dir data/lang_bpe_500 \
  --epoch 20 \
  --avg 10

It will generate a file `pretrained.pt` in the given `exp_dir`. You can later
load it by `icefall.checkpoint.load_checkpoint()`.

To use the generated file with `conformer_ctc3/decode.py`,
you can do:

    cd /path/to/exp_dir
    ln -s pretrained.pt epoch-9999.pt

    cd /path/to/egs/librispeech/ASR
    ./conformer_ctc3/decode.py \
        --exp-dir ./conformer_ctc3/exp \
        --epoch 9999 \
        --avg 1 \
        --max-duration 100 \
        --lang-dir data/lang_bpe_500
"""

import argparse
import logging
from pathlib import Path

import torch
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_ctc_model, get_params

from icefall.checkpoint import (
    average_checkpoints,
    average_checkpoints_with_averaged_model,
    find_checkpoints,
    load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import str2bool


def get_parser():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--epoch",
        type=int,
        default=28,
        help="""It specifies the checkpoint to use for averaging.
        Note: Epoch counts from 0.
        You can specify --avg to use more checkpoints for model averaging.""",
    )

    parser.add_argument(
        "--iter",
        type=int,
        default=0,
        help="""If positive, --epoch is ignored and it
        will use the checkpoint exp_dir/checkpoint-iter.pt.
        You can specify --avg to use more checkpoints for model averaging.
        """,
    )

    parser.add_argument(
        "--avg",
        type=int,
        default=15,
        help="Number of checkpoints to average. Automatically select "
        "consecutive checkpoints before the checkpoint specified by "
        "'--epoch' and '--iter'",
    )

    parser.add_argument(
        "--use-averaged-model",
        type=str2bool,
        default=True,
        help="Whether to load averaged model. Currently it only supports "
        "using --epoch. If True, it would decode with the averaged model "
        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
        "Actually only the models with epoch number of `epoch-avg` and "
        "`epoch` are loaded for averaging. ",
    )

    parser.add_argument(
        "--exp-dir",
        type=str,
        default="pruned_transducer_stateless4/exp",
        help="""It specifies the directory where all training related
        files, e.g., checkpoints, log, etc, are saved
        """,
    )

    parser.add_argument(
        "--lang-dir",
        type=Path,
        default="data/lang_bpe_500",
        help="The lang dir containing word table and LG graph",
    )

    parser.add_argument(
        "--jit-trace",
        type=str2bool,
        default=False,
        help="""True to save a model after applying torch.jit.script.
        """,
    )

    parser.add_argument(
        "--streaming-model",
        type=str2bool,
        default=False,
        help="""Whether to export a streaming model, if the models in exp-dir
        are streaming model, this should be True.
        """,
    )

    add_model_arguments(parser)

    return parser


def main():
    args = get_parser().parse_args()
    args.exp_dir = Path(args.exp_dir)

    params = get_params()
    params.update(vars(args))

    device = torch.device("cpu")
    if torch.cuda.is_available():
        device = torch.device("cuda", 0)

    logging.info(f"device: {device}")

    lexicon = Lexicon(params.lang_dir)
    max_token_id = max(lexicon.tokens)
    num_classes = max_token_id + 1  # +1 for the blank
    params.vocab_size = num_classes

    if params.streaming_model:
        assert params.causal_convolution

    logging.info(params)

    logging.info("About to create model")
    model = get_ctc_model(params)

    model.to(device)

    if not params.use_averaged_model:
        if params.iter > 0:
            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
                : params.avg
            ]
            if len(filenames) == 0:
                raise ValueError(
                    f"No checkpoints found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            elif len(filenames) < params.avg:
                raise ValueError(
                    f"Not enough checkpoints ({len(filenames)}) found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            logging.info(f"averaging {filenames}")
            model.load_state_dict(average_checkpoints(filenames, device=device))
        elif params.avg == 1:
            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
        else:
            start = params.epoch - params.avg + 1
            filenames = []
            for i in range(start, params.epoch + 1):
                if i >= 1:
                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
            logging.info(f"averaging {filenames}")
            model.load_state_dict(average_checkpoints(filenames, device=device))
    else:
        if params.iter > 0:
            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
                : params.avg + 1
            ]
            if len(filenames) == 0:
                raise ValueError(
                    f"No checkpoints found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            elif len(filenames) < params.avg + 1:
                raise ValueError(
                    f"Not enough checkpoints ({len(filenames)}) found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            filename_start = filenames[-1]
            filename_end = filenames[0]
            logging.info(
                "Calculating the averaged model over iteration checkpoints"
                f" from {filename_start} (excluded) to {filename_end}"
            )
            model.load_state_dict(
                average_checkpoints_with_averaged_model(
                    filename_start=filename_start,
                    filename_end=filename_end,
                    device=device,
                )
            )
        else:
            assert params.avg > 0, params.avg
            start = params.epoch - params.avg
            assert start >= 1, start
            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
            logging.info(
                f"Calculating the averaged model over epoch range from "
                f"{start} (excluded) to {params.epoch}"
            )
            model.load_state_dict(
                average_checkpoints_with_averaged_model(
                    filename_start=filename_start,
                    filename_end=filename_end,
                    device=device,
                )
            )

    model.to("cpu")
    model.eval()

    if params.jit_trace:
        # TODO: will support streaming mode
        assert not params.streaming_model
        convert_scaled_to_non_scaled(model, inplace=True)

        logging.info("Using torch.jit.trace()")

        x = torch.zeros(1, 100, 80, dtype=torch.float32)
        x_lens = torch.tensor([100], dtype=torch.int64)
        traced_model = torch.jit.trace(model, (x, x_lens))

        filename = params.exp_dir / "jit_trace.pt"
        traced_model.save(str(filename))
        logging.info(f"Saved to {filename}")
    else:
        logging.info("Not using torch.jit.trace()")
        # Save it using a format so that it can be loaded
        # by :func:`load_checkpoint`
        filename = params.exp_dir / "pretrained.pt"
        torch.save({"model": model.state_dict()}, str(filename))
        logging.info(f"Saved to {filename}")


if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)
    main()