File size: 21,140 Bytes
46455cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"id": "b6b6ded1-0a58-43cb-9065-4f4fae02a01b",
"metadata": {},
"outputs": [],
"source": [
"import argparse\n",
"import logging\n",
"import math\n",
"import re\n",
"from typing import List\n",
"import sys\n",
"sys.path.append('/opt/notebooks/err2020/conformer_ctc3/')\n",
"import k2\n",
"import kaldifeat\n",
"import sentencepiece as spm\n",
"import torch\n",
"import torchaudio\n",
"from decode import get_decoding_params\n",
"from torch.nn.utils.rnn import pad_sequence\n",
"from train import add_model_arguments, get_params\n",
"\n",
"from icefall.decode import (\n",
" get_lattice,\n",
" one_best_decoding,\n",
" rescore_with_n_best_list,\n",
" rescore_with_whole_lattice\n",
")\n",
"from icefall.utils import get_texts, parse_fsa_timestamps_and_texts"
]
},
{
"cell_type": "markdown",
"id": "52514f2f-1195-4e4f-8174-d21aa7462476",
"metadata": {},
"source": [
"## Helpers"
]
},
{
"cell_type": "markdown",
"id": "8ec024bf-7f91-47a9-9293-822fe2765c4b",
"metadata": {},
"source": [
"#### Load args helpers"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3d69d771-b421-417f-a6ff-e1d1c64ba934",
"metadata": {},
"outputs": [],
"source": [
"class Args:\n",
" model_filename='conformer_ctc3/exp/jit_trace.pt'\n",
" bpe_model_filename=\"data/lang_bpe_500/bpe.model\"\n",
" method=\"ctc-decoding\"\n",
" sample_rate=16000\n",
" num_classes=500 #bpe model size\n",
" frame_shift_ms=10\n",
" dither=0\n",
" snip_edges=False\n",
" num_bins=80\n",
" device='cpu'\n",
" \n",
" def args_from_dict(self, dct):\n",
" for key in dct:\n",
" setattr(self, key, dct[key])\n",
" \n",
" def __repr__(self):\n",
" text=''\n",
" for k, v in self.__dict__.items():\n",
" text+=f'{k} = {v}\\n'\n",
" return text"
]
},
{
"cell_type": "markdown",
"id": "57a3cd62-3037-4c99-9094-dd63429e660e",
"metadata": {},
"source": [
"#### Decoder helper"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "48306369-fb68-4abe-be62-0806d00059f8",
"metadata": {},
"outputs": [],
"source": [
"class ConformerCtc3Decoder:\n",
" def __init__(self, params_dct=None):\n",
" logging.info('loading args')\n",
" self.args=Args()\n",
" if params_dct is not None:\n",
" self.args.args_from_dict(params_dct)\n",
" logging.info('loading model')\n",
" self.load_model()\n",
" logging.info('loading fbank')\n",
" self.get_fbank()\n",
" \n",
" def update_args(self, dct):\n",
" self.args.args_from_dict(dct)\n",
" \n",
" def load_model_(self, model_filename, device):\n",
" device = torch.device(\"cpu\")\n",
" model = torch.jit.load(model_filename)\n",
" model.to(device)\n",
" model=model.eval()\n",
" self.model=model\n",
" \n",
" def load_model(self, model_filename=None, device=None):\n",
" if model_filename is not None:\n",
" self.args.model_filename=model_filename\n",
" if device is not None:\n",
" self.args.device=device\n",
" self.load_model_(self.args.model_filename, self.args.device)\n",
" \n",
" def get_fbank_(self, device='cpu'):\n",
" opts = kaldifeat.FbankOptions()\n",
" opts.device = device\n",
" opts.frame_opts.dither = self.args.dither\n",
" opts.frame_opts.snip_edges = self.args.snip_edges\n",
" #opts.frame_opts.samp_freq = sample_rate\n",
" opts.mel_opts.num_bins = self.args.num_bins\n",
"\n",
" fbank = kaldifeat.Fbank(opts)\n",
" return fbank\n",
" \n",
" def get_fbank(self):\n",
" self.fbank=self.get_fbank_(self.args.device)\n",
" \n",
" def read_sound_file_(self, filename: str, expected_sample_rate: float ) -> List[torch.Tensor]:\n",
" \"\"\"Read a sound file into a 1-D float32 torch tensor.\n",
" Args:\n",
" filenames:\n",
" A list of sound filenames.\n",
" expected_sample_rate:\n",
" The expected sample rate of the sound files.\n",
" Returns:\n",
" Return a 1-D float32 torch tensor.\n",
" \"\"\"\n",
" wave, sample_rate = torchaudio.load(filename)\n",
" assert sample_rate == expected_sample_rate, (\n",
" f\"expected sample rate: {expected_sample_rate}. \" f\"Given: {sample_rate}\"\n",
" )\n",
" # We use only the first channel\n",
" return wave[0]\n",
" \n",
" def format_trs(self, hyp, timestamps):\n",
" if len(hyp)!=len(timestamps):\n",
" print(f'len of hyp and timestamps is not the same len hyp {len(hyp)} and len of timestamps {len(timestamps)}')\n",
" return None\n",
" trs ={'text': ' '.join(hyp),\n",
" 'words': [{'word': w, 'start':timestamps[i][0], 'end': timestamps[i][1]} for i, w in enumerate(hyp)]\n",
" }\n",
" return trs\n",
" \n",
" def decode_(self, wave, fbank, model, device, method, bpe_model_filename, num_classes, \n",
" min_active_states, max_active_states, subsampling_factor, use_double_scores, \n",
" frame_shift_ms, search_beam, output_beam):\n",
" \n",
" wave = [wave.to(device)]\n",
" logging.info(\"Decoding started\")\n",
" features = fbank(wave)\n",
" feature_lengths = [f.size(0) for f in features]\n",
"\n",
" features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))\n",
" feature_lengths = torch.tensor(feature_lengths, device=device)\n",
"\n",
" nnet_output, _ = model(features, feature_lengths)\n",
"\n",
" batch_size = nnet_output.shape[0]\n",
" supervision_segments = torch.tensor(\n",
" [\n",
" [i, 0, feature_lengths[i] // subsampling_factor]\n",
" for i in range(batch_size)\n",
" ],\n",
" dtype=torch.int32,\n",
" )\n",
"\n",
" if method == \"ctc-decoding\":\n",
" logging.info(\"Use CTC decoding\")\n",
" bpe_model = spm.SentencePieceProcessor()\n",
" bpe_model.load(bpe_model_filename)\n",
" max_token_id = num_classes - 1\n",
"\n",
" H = k2.ctc_topo(\n",
" max_token=max_token_id,\n",
" modified=False,\n",
" device=device,\n",
" )\n",
"\n",
" lattice = get_lattice(\n",
" nnet_output=nnet_output,\n",
" decoding_graph=H,\n",
" supervision_segments=supervision_segments,\n",
" search_beam=search_beam,\n",
" output_beam=output_beam,\n",
" min_active_states=min_active_states,\n",
" max_active_states=max_active_states,\n",
" subsampling_factor=subsampling_factor,\n",
" )\n",
"\n",
" best_path = one_best_decoding(\n",
" lattice=lattice, use_double_scores=use_double_scores\n",
" )\n",
"\n",
" confidence=best_path.get_tot_scores(use_double_scores=False, log_semiring=False).detach()[0]\n",
"\n",
" timestamps, hyps = parse_fsa_timestamps_and_texts(\n",
" best_paths=best_path,\n",
" sp=bpe_model,\n",
" subsampling_factor=subsampling_factor,\n",
" frame_shift_ms=frame_shift_ms,\n",
" )\n",
" logging.info(f'confidence {confidence}')\n",
" logging.info(timestamps)\n",
" token_ids = get_texts(best_path)\n",
" return self.format_trs(hyps[0], timestamps[0])\n",
" \n",
" def transcribe_file(self, audio_filename):\n",
" wave=self.read_sound_file_(audio_filename, expected_sample_rate=self.args.sample_rate)\n",
" \n",
" trs=self.decode_(wave, self.fbank, self.model, self.args.device, self.args.method, \n",
" self.args.bpe_model_filename, self.args.num_classes,\n",
" self.args.min_active_states, self.args.max_active_states, \n",
" self.args.subsampling_factor, self.args.use_double_scores, \n",
" self.args.frame_shift_ms, self.args.search_beam, self.args.output_beam)\n",
" return trs"
]
},
{
"cell_type": "markdown",
"id": "b1464957-05b6-40f8-a1aa-c58edbed440c",
"metadata": {},
"source": [
"## Example usage"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "50ab7c8e-39b6-4783-8342-e79e91d2417e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"fatal: not a git repository (or any parent up to mount point /opt)\n",
"Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n",
"fatal: not a git repository (or any parent up to mount point /opt)\n",
"Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n",
"fatal: not a git repository (or any parent up to mount point /opt)\n",
"Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n"
]
}
],
"source": [
"#create transcriber/decoder object\n",
"#if you want to change parameters (for example model filename) you could create a dict (see class Args attribute names)\n",
"#and add it to as argument decoder initialization:\n",
"#conformerCtc3Decoder(get_params() | get_decoding_params() | {'model_filename':'my new model filename'})\n",
"transcriber=ConformerCtc3Decoder(get_params() | get_decoding_params())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8020f371-7584-4f6c-990b-f2c023e24060",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 4.86 s, sys: 435 ms, total: 5.29 s\n",
"Wall time: 4.45 s\n"
]
},
{
"data": {
"text/plain": [
"{'text': 'mina tahaksin homme täna ja homme kui saan all kolm krantsumadiseid veiki panna',\n",
" 'words': [{'word': 'mina', 'start': 0.8, 'end': 0.84},\n",
" {'word': 'tahaksin', 'start': 1.0, 'end': 1.32},\n",
" {'word': 'homme', 'start': 1.48, 'end': 1.76},\n",
" {'word': 'täna', 'start': 2.08, 'end': 2.12},\n",
" {'word': 'ja', 'start': 3.72, 'end': 3.76},\n",
" {'word': 'homme', 'start': 4.16, 'end': 4.44},\n",
" {'word': 'kui', 'start': 5.96, 'end': 6.0},\n",
" {'word': 'saan', 'start': 6.52, 'end': 6.84},\n",
" {'word': 'all', 'start': 7.36, 'end': 7.4},\n",
" {'word': 'kolm', 'start': 8.32, 'end': 8.36},\n",
" {'word': 'krantsumadiseid', 'start': 8.68, 'end': 9.72},\n",
" {'word': 'veiki', 'start': 9.76, 'end': 10.04},\n",
" {'word': 'panna', 'start': 10.16, 'end': 10.4}]}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#transribe audiofile (NB! model assumes sample rate of 16000)\n",
"%time transcriber.transcribe_file('audio/emt16k.wav')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "4d2a480d-f0aa-4474-bfdb-ad298a629ce5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 16.2 s, sys: 1.8 s, total: 18 s\n",
"Wall time: 15.1 s\n"
]
}
],
"source": [
"%time trs=transcriber.transcribe_file('audio/oden_kypsis16k.wav')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d3827548-bca0-4409-95bc-9aa8ba377135",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'text': 'enamus ajast nagu klikkid neid allserva tekivad need luba küpsiseid mis on nagu ilusti kohati tõlgitud eesti keelde see idee arusaadavamaks ma tean et see on kukis inglise kees ma ei saa sellest ka aru nagu mis asi on kukis on ju ma saan aru et ta vaid minee eest ära luba küpsises tava ei anna noh anna minna ma luban küpssi juhmaoloog okei on ju ma ei tea mis ta teeb lihtsalt selle eestikeelseks tõlk või eesti keelde tõlkimine kui teinud seda nagu arusaadavamaks küpsised kuule kuule veebisaid küsib sinu käest tahad tähendab on okei kui me neid kugiseid kasutame sa mingi ja mida iga mul täiesti savi või noh et et jah',\n",
" 'words': [{'word': 'enamus', 'start': 3.56, 'end': 3.8},\n",
" {'word': 'ajast', 'start': 3.8, 'end': 4.04},\n",
" {'word': 'nagu', 'start': 4.2, 'end': 4.24},\n",
" {'word': 'klikkid', 'start': 4.72, 'end': 5.12},\n",
" {'word': 'neid', 'start': 5.16, 'end': 5.2},\n",
" {'word': 'allserva', 'start': 5.72, 'end': 6.2},\n",
" {'word': 'tekivad', 'start': 6.32, 'end': 6.64},\n",
" {'word': 'need', 'start': 7.4, 'end': 7.44},\n",
" {'word': 'luba', 'start': 7.72, 'end': 8.0},\n",
" {'word': 'küpsiseid', 'start': 8.08, 'end': 8.64},\n",
" {'word': 'mis', 'start': 9.68, 'end': 9.72},\n",
" {'word': 'on', 'start': 9.76, 'end': 9.8},\n",
" {'word': 'nagu', 'start': 9.92, 'end': 9.96},\n",
" {'word': 'ilusti', 'start': 10.04, 'end': 10.36},\n",
" {'word': 'kohati', 'start': 10.4, 'end': 10.68},\n",
" {'word': 'tõlgitud', 'start': 11.08, 'end': 11.4},\n",
" {'word': 'eesti', 'start': 11.6, 'end': 11.64},\n",
" {'word': 'keelde', 'start': 11.8, 'end': 12.08},\n",
" {'word': 'see', 'start': 12.68, 'end': 12.72},\n",
" {'word': 'idee', 'start': 12.8, 'end': 13.04},\n",
" {'word': 'arusaadavamaks', 'start': 13.2, 'end': 13.8},\n",
" {'word': 'ma', 'start': 13.92, 'end': 13.96},\n",
" {'word': 'tean', 'start': 14.04, 'end': 14.24},\n",
" {'word': 'et', 'start': 14.28, 'end': 14.36},\n",
" {'word': 'see', 'start': 14.4, 'end': 14.44},\n",
" {'word': 'on', 'start': 14.44, 'end': 14.52},\n",
" {'word': 'kukis', 'start': 14.56, 'end': 14.92},\n",
" {'word': 'inglise', 'start': 14.92, 'end': 15.2},\n",
" {'word': 'kees', 'start': 15.2, 'end': 15.44},\n",
" {'word': 'ma', 'start': 15.84, 'end': 15.88},\n",
" {'word': 'ei', 'start': 15.92, 'end': 16.0},\n",
" {'word': 'saa', 'start': 16.04, 'end': 16.08},\n",
" {'word': 'sellest', 'start': 16.24, 'end': 16.28},\n",
" {'word': 'ka', 'start': 16.56, 'end': 16.6},\n",
" {'word': 'aru', 'start': 16.76, 'end': 16.8},\n",
" {'word': 'nagu', 'start': 16.96, 'end': 17.0},\n",
" {'word': 'mis', 'start': 17.12, 'end': 17.16},\n",
" {'word': 'asi', 'start': 17.28, 'end': 17.32},\n",
" {'word': 'on', 'start': 17.36, 'end': 17.4},\n",
" {'word': 'kukis', 'start': 17.48, 'end': 17.8},\n",
" {'word': 'on', 'start': 17.88, 'end': 17.92},\n",
" {'word': 'ju', 'start': 17.96, 'end': 18.0},\n",
" {'word': 'ma', 'start': 18.28, 'end': 18.32},\n",
" {'word': 'saan', 'start': 18.36, 'end': 18.48},\n",
" {'word': 'aru', 'start': 18.52, 'end': 18.56},\n",
" {'word': 'et', 'start': 18.72, 'end': 18.76},\n",
" {'word': 'ta', 'start': 19.2, 'end': 19.24},\n",
" {'word': 'vaid', 'start': 19.32, 'end': 19.44},\n",
" {'word': 'minee', 'start': 19.48, 'end': 19.68},\n",
" {'word': 'eest', 'start': 19.76, 'end': 19.96},\n",
" {'word': 'ära', 'start': 20.12, 'end': 20.16},\n",
" {'word': 'luba', 'start': 21.56, 'end': 21.88},\n",
" {'word': 'küpsises', 'start': 21.96, 'end': 22.44},\n",
" {'word': 'tava', 'start': 22.6, 'end': 22.76},\n",
" {'word': 'ei', 'start': 22.84, 'end': 22.88},\n",
" {'word': 'anna', 'start': 23.0, 'end': 23.16},\n",
" {'word': 'noh', 'start': 23.4, 'end': 23.44},\n",
" {'word': 'anna', 'start': 23.64, 'end': 23.76},\n",
" {'word': 'minna', 'start': 24.0, 'end': 24.04},\n",
" {'word': 'ma', 'start': 24.16, 'end': 24.2},\n",
" {'word': 'luban', 'start': 24.24, 'end': 24.56},\n",
" {'word': 'küpssi', 'start': 24.64, 'end': 24.92},\n",
" {'word': 'juhmaoloog', 'start': 25.0, 'end': 25.28},\n",
" {'word': 'okei', 'start': 25.28, 'end': 25.56},\n",
" {'word': 'on', 'start': 25.64, 'end': 25.72},\n",
" {'word': 'ju', 'start': 25.72, 'end': 25.76},\n",
" {'word': 'ma', 'start': 25.84, 'end': 25.88},\n",
" {'word': 'ei', 'start': 25.92, 'end': 25.96},\n",
" {'word': 'tea', 'start': 26.0, 'end': 26.04},\n",
" {'word': 'mis', 'start': 26.28, 'end': 26.32},\n",
" {'word': 'ta', 'start': 26.36, 'end': 26.4},\n",
" {'word': 'teeb', 'start': 26.56, 'end': 26.8},\n",
" {'word': 'lihtsalt', 'start': 27.04, 'end': 27.08},\n",
" {'word': 'selle', 'start': 27.24, 'end': 27.28},\n",
" {'word': 'eestikeelseks', 'start': 28.04, 'end': 28.68},\n",
" {'word': 'tõlk', 'start': 28.8, 'end': 29.08},\n",
" {'word': 'või', 'start': 29.16, 'end': 29.2},\n",
" {'word': 'eesti', 'start': 29.48, 'end': 29.52},\n",
" {'word': 'keelde', 'start': 29.68, 'end': 30.04},\n",
" {'word': 'tõlkimine', 'start': 30.2, 'end': 30.68},\n",
" {'word': 'kui', 'start': 30.8, 'end': 30.84},\n",
" {'word': 'teinud', 'start': 30.96, 'end': 31.16},\n",
" {'word': 'seda', 'start': 31.2, 'end': 31.24},\n",
" {'word': 'nagu', 'start': 31.72, 'end': 31.76},\n",
" {'word': 'arusaadavamaks', 'start': 31.88, 'end': 32.6},\n",
" {'word': 'küpsised', 'start': 33.52, 'end': 33.88},\n",
" {'word': 'kuule', 'start': 36.96, 'end': 37.08},\n",
" {'word': 'kuule', 'start': 37.32, 'end': 37.44},\n",
" {'word': 'veebisaid', 'start': 37.8, 'end': 38.28},\n",
" {'word': 'küsib', 'start': 38.44, 'end': 38.56},\n",
" {'word': 'sinu', 'start': 38.6, 'end': 38.72},\n",
" {'word': 'käest', 'start': 38.76, 'end': 39.0},\n",
" {'word': 'tahad', 'start': 39.52, 'end': 39.72},\n",
" {'word': 'tähendab', 'start': 40.32, 'end': 40.36},\n",
" {'word': 'on', 'start': 40.8, 'end': 40.88},\n",
" {'word': 'okei', 'start': 40.88, 'end': 41.2},\n",
" {'word': 'kui', 'start': 41.24, 'end': 41.28},\n",
" {'word': 'me', 'start': 41.36, 'end': 41.4},\n",
" {'word': 'neid', 'start': 41.6, 'end': 41.64},\n",
" {'word': 'kugiseid', 'start': 42.2, 'end': 42.64},\n",
" {'word': 'kasutame', 'start': 42.8, 'end': 43.08},\n",
" {'word': 'sa', 'start': 43.56, 'end': 43.6},\n",
" {'word': 'mingi', 'start': 43.8, 'end': 43.84},\n",
" {'word': 'ja', 'start': 44.04, 'end': 44.08},\n",
" {'word': 'mida', 'start': 44.28, 'end': 44.32},\n",
" {'word': 'iga', 'start': 44.44, 'end': 44.48},\n",
" {'word': 'mul', 'start': 44.56, 'end': 44.6},\n",
" {'word': 'täiesti', 'start': 44.92, 'end': 44.96},\n",
" {'word': 'savi', 'start': 45.08, 'end': 45.28},\n",
" {'word': 'või', 'start': 45.36, 'end': 45.4},\n",
" {'word': 'noh', 'start': 45.44, 'end': 45.48},\n",
" {'word': 'et', 'start': 45.6, 'end': 45.64},\n",
" {'word': 'et', 'start': 47.36, 'end': 47.4},\n",
" {'word': 'jah', 'start': 47.56, 'end': 47.68}]}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea3b25b7-a1f9-4b21-911d-35159c5f3009",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|