File size: 35,349 Bytes
46455cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
#                                                 Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) decode in non-streaming mode (take ctc-decoding as an example)
./conformer_ctc3/decode.py \
    --epoch 30 \
    --avg 15 \
    --exp-dir ./conformer_ctc3/exp \
    --max-duration 600 \
    --decoding-method ctc-decoding

(2) decode in streaming mode (take ctc-decoding as an example)
./conformer_ctc3/decode.py \
    --epoch 30 \
    --avg 15 \
    --simulate-streaming 1 \
    --causal-convolution 1 \
    --decode-chunk-size 16 \
    --left-context 64 \
    --exp-dir ./conformer_ctc3/exp \
    --max-duration 600 \
    --decoding-method ctc-decoding

To evaluate symbol delay, you should:
(1) Generate cuts with word-time alignments:
./add_alignments.sh
(2) Set the argument "--manifest-dir data/fbank_ali" while decoding.
For example:
./conformer_ctc3/decode.py \
    --epoch 30 \
    --avg 15 \
    --exp-dir ./conformer_ctc3/exp \
    --max-duration 600 \
    --decoding-method ctc-decoding \
    --simulate-streaming 1 \
    --causal-convolution 1 \
    --decode-chunk-size 16 \
    --left-context 64 \
    --manifest-dir data/fbank_ali
Note: It supports calculating symbol delay with following decoding methods:
    - ctc-decoding
    - 1best
"""


import argparse
import logging
import math
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from train import add_model_arguments, get_ctc_model, get_params

from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
from icefall.checkpoint import (
    average_checkpoints,
    average_checkpoints_with_averaged_model,
    find_checkpoints,
    load_checkpoint,
)
from icefall.decode import (
    get_lattice,
    nbest_decoding,
    nbest_oracle,
    one_best_decoding,
    rescore_with_n_best_list,
    rescore_with_whole_lattice,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
    AttributeDict,
    convert_timestamp,
    get_texts,
    make_pad_mask,
    parse_bpe_start_end_pairs,
    parse_fsa_timestamps_and_texts,
    setup_logger,
    store_transcripts_and_timestamps,
    str2bool,
    write_error_stats_with_timestamps,
)

LOG_EPS = math.log(1e-10)


def get_parser():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )

    parser.add_argument(
        "--epoch",
        type=int,
        default=30,
        help="""It specifies the checkpoint to use for decoding.
        Note: Epoch counts from 1.
        You can specify --avg to use more checkpoints for model averaging.""",
    )

    parser.add_argument(
        "--iter",
        type=int,
        default=0,
        help="""If positive, --epoch is ignored and it
        will use the checkpoint exp_dir/checkpoint-iter.pt.
        You can specify --avg to use more checkpoints for model averaging.
        """,
    )

    parser.add_argument(
        "--avg",
        type=int,
        default=15,
        help="Number of checkpoints to average. Automatically select "
        "consecutive checkpoints before the checkpoint specified by "
        "'--epoch' and '--iter'",
    )

    parser.add_argument(
        "--use-averaged-model",
        type=str2bool,
        default=True,
        help="Whether to load averaged model. Currently it only supports "
        "using --epoch. If True, it would decode with the averaged model "
        "over the epoch range from `epoch-avg` (excluded) to `epoch`."
        "Actually only the models with epoch number of `epoch-avg` and "
        "`epoch` are loaded for averaging. ",
    )

    parser.add_argument(
        "--exp-dir",
        type=str,
        default="pruned_transducer_stateless4/exp",
        help="The experiment dir",
    )

    parser.add_argument(
        "--lang-dir",
        type=Path,
        default="data/lang_bpe_500",
        help="The lang dir containing word table and LG graph",
    )

    parser.add_argument(
        "--decoding-method",
        type=str,
        default="ctc-decoding",
        help="""Decoding method.
        Supported values are:
        - (0) ctc-greedy-search. It uses a sentence piece model,
          i.e., lang_dir/bpe.model, to convert word pieces to words.
          It needs neither a lexicon nor an n-gram LM.
        - (1) ctc-decoding. Use CTC decoding. It uses a sentence piece
          model, i.e., lang_dir/bpe.model, to convert word pieces to words.
          It needs neither a lexicon nor an n-gram LM.
        - (2) 1best. Extract the best path from the decoding lattice as the
          decoding result.
        - (3) nbest. Extract n paths from the decoding lattice; the path
          with the highest score is the decoding result.
        - (4) nbest-rescoring. Extract n paths from the decoding lattice,
          rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
          the highest score is the decoding result.
        - (5) whole-lattice-rescoring. Rescore the decoding lattice with an
          n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
          is the decoding result.
          you have trained an RNN LM using ./rnn_lm/train.py
        - (6) nbest-oracle. Its WER is the lower bound of any n-best
          rescoring method can achieve. Useful for debugging n-best
          rescoring method.
        """,
    )

    parser.add_argument(
        "--num-paths",
        type=int,
        default=100,
        help="""Number of paths for n-best based decoding method.
        Used only when "method" is one of the following values:
        nbest, nbest-rescoring, and nbest-oracle
        """,
    )

    parser.add_argument(
        "--nbest-scale",
        type=float,
        default=0.5,
        help="""The scale to be applied to `lattice.scores`.
        It's needed if you use any kinds of n-best based rescoring.
        Used only when "method" is one of the following values:
        nbest, nbest-rescoring, and nbest-oracle
        A smaller value results in more unique paths.
        """,
    )

    parser.add_argument(
        "--lm-dir",
        type=str,
        default="data/lm",
        help="""The n-gram LM dir.
        It should contain either G_4_gram.pt or G_4_gram.fst.txt
        """,
    )

    parser.add_argument(
        "--simulate-streaming",
        type=str2bool,
        default=False,
        help="""Whether to simulate streaming in decoding, this is a good way to
        test a streaming model.
        """,
    )

    parser.add_argument(
        "--decode-chunk-size",
        type=int,
        default=16,
        help="The chunk size for decoding (in frames after subsampling)",
    )

    parser.add_argument(
        "--left-context",
        type=int,
        default=64,
        help="left context can be seen during decoding (in frames after subsampling)",
    )

    parser.add_argument(
        "--hlg-scale",
        type=float,
        default=0.8,
        help="""The scale to be applied to `hlg.scores`.
        """,
    )

    add_model_arguments(parser)

    return parser


def get_decoding_params() -> AttributeDict:
    """Parameters for decoding."""
    params = AttributeDict(
        {
            "frame_shift_ms": 10,
            "search_beam": 20,
            "output_beam": 8,
            "min_active_states": 30,
            "max_active_states": 10000,
            "use_double_scores": True,
        }
    )
    return params


def ctc_greedy_search(
    ctc_probs: torch.Tensor,
    nnet_output_lens: torch.Tensor,
    sp: spm.SentencePieceProcessor,
    subsampling_factor: int = 4,
    frame_shift_ms: float = 10,
) -> Tuple[List[Tuple[float, float]], List[List[str]]]:
    """Apply CTC greedy search
    Args:
      ctc_probs (torch.Tensor):
        (batch, max_len, feat_dim)
      nnet_output_lens (torch.Tensor):
        (batch, )
      sp:
        The BPE model.
      subsampling_factor:
        The subsampling factor of the model.
      frame_shift_ms:
        Frame shift in milliseconds between two contiguous frames.

    Returns:
      utt_time_pairs:
        A list of pair list. utt_time_pairs[i] is a list of
        (start-time, end-time) pairs for each word in
        utterance-i.
      utt_words:
        A list of str list. utt_words[i] is a word list of utterence-i.
    """
    topk_prob, topk_index = ctc_probs.topk(1, dim=2)  # (B, maxlen, 1)
    topk_index = topk_index.squeeze(2)  # (B, maxlen)
    mask = make_pad_mask(nnet_output_lens)
    topk_index = topk_index.masked_fill_(mask, 0)  # (B, maxlen)
    hyps = [hyp.tolist() for hyp in topk_index]

    def get_first_tokens(tokens: List[int]) -> List[bool]:
        is_first_token = []
        first_tokens = []
        for t in range(len(tokens)):
            if tokens[t] != 0 and (t == 0 or tokens[t - 1] != tokens[t]):
                is_first_token.append(True)
                first_tokens.append(tokens[t])
            else:
                is_first_token.append(False)
        return first_tokens, is_first_token

    utt_time_pairs = []
    utt_words = []
    for utt in range(len(hyps)):
        first_tokens, is_first_token = get_first_tokens(hyps[utt])
        all_tokens = sp.id_to_piece(hyps[utt])
        index_pairs = parse_bpe_start_end_pairs(all_tokens, is_first_token)
        words = sp.decode(first_tokens).split()
        assert len(index_pairs) == len(words), (
            len(index_pairs),
            len(words),
            all_tokens,
        )
        start = convert_timestamp(
            frames=[i[0] for i in index_pairs],
            subsampling_factor=subsampling_factor,
            frame_shift_ms=frame_shift_ms,
        )
        end = convert_timestamp(
            # The duration in frames is (end_frame_index - start_frame_index + 1)
            frames=[i[1] + 1 for i in index_pairs],
            subsampling_factor=subsampling_factor,
            frame_shift_ms=frame_shift_ms,
        )
        utt_time_pairs.append(list(zip(start, end)))
        utt_words.append(words)

    return utt_time_pairs, utt_words


def remove_duplicates_and_blank(hyp: List[int]) -> Tuple[List[int], List[int]]:
    # modified from https://github.com/wenet-e2e/wenet/blob/main/wenet/utils/common.py
    new_hyp: List[int] = []
    time: List[Tuple[int, int]] = []
    cur = 0
    start, end = -1, -1
    while cur < len(hyp):
        if hyp[cur] != 0:
            new_hyp.append(hyp[cur])
            start = cur
        prev = cur
        while cur < len(hyp) and hyp[cur] == hyp[prev]:
            if start != -1:
                end = cur
            cur += 1
        if start != -1 and end != -1:
            time.append((start, end))
            start, end = -1, -1
    return new_hyp, time


def decode_one_batch(
    params: AttributeDict,
    model: nn.Module,
    HLG: Optional[k2.Fsa],
    H: Optional[k2.Fsa],
    bpe_model: Optional[spm.SentencePieceProcessor],
    batch: dict,
    word_table: k2.SymbolTable,
    sos_id: int,
    eos_id: int,
    G: Optional[k2.Fsa] = None,
) -> Dict[str, Tuple[List[List[str]], List[List[float]]]]:
    """Decode one batch and return the result in a dict. The dict has the
    following format:
    - key: It indicates the setting used for decoding. For example,
           if no rescoring is used, the key is the string `no_rescore`.
           If LM rescoring is used, the key is the string `lm_scale_xxx`,
           where `xxx` is the value of `lm_scale`. An example key is
           `lm_scale_0.7`
    - value: It contains the decoding result. `len(value)` equals to
             batch size. `value[i]` is the decoding result for the i-th
             utterance in the given batch.

    Args:
      params:
        It's the return value of :func:`get_params`.

        - params.decoding_method is "1best", it uses 1best decoding without LM rescoring.
        - params.decoding_method is "nbest", it uses nbest decoding without LM rescoring.
        - params.decoding_method is "nbest-rescoring", it uses nbest LM rescoring.
        - params.decoding_method is "whole-lattice-rescoring", it uses whole lattice LM
          rescoring.

      model:
        The neural model.
      HLG:
        The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
      H:
        The ctc topo. Used only when params.decoding_method is ctc-decoding.
      bpe_model:
        The BPE model. Used only when params.decoding_method is ctc-decoding.
      batch:
        It is the return value from iterating
        `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
        for the format of the `batch`.
      word_table:
        The word symbol table.
      sos_id:
        The token ID of the SOS.
      eos_id:
        The token ID of the EOS.
      G:
        An LM. It is not None when params.decoding_method is "nbest-rescoring"
        or "whole-lattice-rescoring". In general, the G in HLG
        is a 3-gram LM, while this G is a 4-gram LM.
    Returns:
      Return the decoding result. See above description for the format of
      the returned dict. Note: If it decodes to nothing, then return None.
    """
    if HLG is not None:
        device = HLG.device
    else:
        device = H.device
    feature = batch["inputs"]
    assert feature.ndim == 3
    feature = feature.to(device)
    # at entry, feature is (N, T, C)

    supervisions = batch["supervisions"]
    feature_lens = supervisions["num_frames"].to(device)

    if params.simulate_streaming:
        feature_lens += params.left_context
        feature = torch.nn.functional.pad(
            feature,
            pad=(0, 0, 0, params.left_context),
            value=LOG_EPS,
        )
        encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
            x=feature,
            x_lens=feature_lens,
            chunk_size=params.decode_chunk_size,
            left_context=params.left_context,
            simulate_streaming=True,
        )
    else:
        encoder_out, encoder_out_lens = model.encoder(feature, feature_lens)

    nnet_output = model.get_ctc_output(encoder_out)
    # nnet_output is (N, T, C)

    if params.decoding_method == "ctc-greedy-search":
        timestamps, hyps = ctc_greedy_search(
            ctc_probs=nnet_output,
            nnet_output_lens=encoder_out_lens,
            sp=bpe_model,
            subsampling_factor=params.subsampling_factor,
            frame_shift_ms=params.frame_shift_ms,
        )
        key = "ctc-greedy-search"
        return {key: (hyps, timestamps)}

    supervision_segments = torch.stack(
        (
            supervisions["sequence_idx"],
            supervisions["start_frame"] // params.subsampling_factor,
            encoder_out_lens.cpu(),
        ),
        1,
    ).to(torch.int32)

    if H is None:
        assert HLG is not None
        decoding_graph = HLG
    else:
        assert HLG is None
        assert bpe_model is not None
        decoding_graph = H

    lattice = get_lattice(
        nnet_output=nnet_output,
        decoding_graph=decoding_graph,
        supervision_segments=supervision_segments,
        search_beam=params.search_beam,
        output_beam=params.output_beam,
        min_active_states=params.min_active_states,
        max_active_states=params.max_active_states,
        subsampling_factor=params.subsampling_factor,
    )

    if params.decoding_method == "ctc-decoding":
        best_path = one_best_decoding(
            lattice=lattice, use_double_scores=params.use_double_scores
        )
        timestamps, hyps = parse_fsa_timestamps_and_texts(
            best_paths=best_path,
            sp=bpe_model,
            subsampling_factor=params.subsampling_factor,
            frame_shift_ms=params.frame_shift_ms,
        )
        key = "ctc-decoding"
        return {key: (hyps, timestamps)}

    if params.decoding_method == "nbest-oracle":
        # Note: You can also pass rescored lattices to it.
        # We choose the HLG decoded lattice for speed reasons
        # as HLG decoding is faster and the oracle WER
        # is only slightly worse than that of rescored lattices.
        best_path = nbest_oracle(
            lattice=lattice,
            num_paths=params.num_paths,
            ref_texts=supervisions["text"],
            word_table=word_table,
            nbest_scale=params.nbest_scale,
            oov="<UNK>",
        )
        hyps = get_texts(best_path)
        hyps = [[word_table[i] for i in ids] for ids in hyps]
        timestamps = [[] for _ in range(len(hyps))]
        key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}_hlg_scale_{params.hlg_scale}"  # noqa
        return {key: (hyps, timestamps)}

    if params.decoding_method in ["1best", "nbest"]:
        if params.decoding_method == "1best":
            best_path = one_best_decoding(
                lattice=lattice, use_double_scores=params.use_double_scores
            )
            key = f"no_rescore_hlg_scale_{params.hlg_scale}"
            timestamps, hyps = parse_fsa_timestamps_and_texts(
                best_paths=best_path,
                word_table=word_table,
                subsampling_factor=params.subsampling_factor,
                frame_shift_ms=params.frame_shift_ms,
            )
        else:
            best_path = nbest_decoding(
                lattice=lattice,
                num_paths=params.num_paths,
                use_double_scores=params.use_double_scores,
                nbest_scale=params.nbest_scale,
            )
            key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}-hlg-scale-{params.hlg_scale}"  # noqa
            hyps = get_texts(best_path)
            hyps = [[word_table[i] for i in ids] for ids in hyps]
            timestamps = [[] for _ in range(len(hyps))]
        return {key: (hyps, timestamps)}

    assert params.decoding_method in [
        "nbest-rescoring",
        "whole-lattice-rescoring",
    ]

    lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
    lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
    lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]

    if params.decoding_method == "nbest-rescoring":
        best_path_dict = rescore_with_n_best_list(
            lattice=lattice,
            G=G,
            num_paths=params.num_paths,
            lm_scale_list=lm_scale_list,
            nbest_scale=params.nbest_scale,
        )
    elif params.decoding_method == "whole-lattice-rescoring":
        best_path_dict = rescore_with_whole_lattice(
            lattice=lattice,
            G_with_epsilon_loops=G,
            lm_scale_list=lm_scale_list,
        )
    else:
        assert False, f"Unsupported decoding method: {params.decoding_method}"

    ans = dict()
    if best_path_dict is not None:
        for lm_scale_str, best_path in best_path_dict.items():
            hyps = get_texts(best_path)
            hyps = [[word_table[i] for i in ids] for ids in hyps]
            timestamps = [[] for _ in range(len(hyps))]
            ans[lm_scale_str] = (hyps, timestamps)
    else:
        ans = None
    return ans


def decode_dataset(
    dl: torch.utils.data.DataLoader,
    params: AttributeDict,
    model: nn.Module,
    HLG: Optional[k2.Fsa],
    H: Optional[k2.Fsa],
    bpe_model: Optional[spm.SentencePieceProcessor],
    word_table: k2.SymbolTable,
    sos_id: int,
    eos_id: int,
    G: Optional[k2.Fsa] = None,
) -> Dict[
    str,
    List[
        Tuple[
            str,
            List[str],
            List[str],
            List[Tuple[float, float]],
            List[Tuple[float, float]],
        ]
    ],
]:
    """Decode dataset.

    Args:
      dl:
        PyTorch's dataloader containing the dataset to decode.
      params:
        It is returned by :func:`get_params`.
      model:
        The neural model.
      HLG:
        The decoding graph. Used only when params.decoding_method is NOT ctc-decoding.
      H:
        The ctc topo. Used only when params.decoding_method is ctc-decoding.
      bpe_model:
        The BPE model. Used only when params.decoding_method is ctc-decoding.
      word_table:
        It is the word symbol table.
      sos_id:
        The token ID for SOS.
      eos_id:
        The token ID for EOS.
      G:
        An LM. It is not None when params.decoding_method is "nbest-rescoring"
        or "whole-lattice-rescoring". In general, the G in HLG
        is a 3-gram LM, while this G is a 4-gram LM.
    Returns:
      Return a dict, whose key may be "no-rescore" if no LM rescoring
      is used, or it may be "lm_scale_0.7" if LM rescoring is used.
      Its value is a list of tuples. Each tuple contains two elements:
      The first is the reference transcript, and the second is the
      predicted result.
    """
    num_cuts = 0

    try:
        num_batches = len(dl)
    except TypeError:
        num_batches = "?"

    results = defaultdict(list)
    for batch_idx, batch in enumerate(dl):
        texts = batch["supervisions"]["text"]
        cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]

        timestamps_ref = []
        for cut in batch["supervisions"]["cut"]:
            for s in cut.supervisions:
                time = []
                if s.alignment is not None and "word" in s.alignment:
                    time = [
                        (aliword.start, aliword.end)
                        for aliword in s.alignment["word"]
                        if aliword.symbol != ""
                    ]
                timestamps_ref.append(time)

        hyps_dict = decode_one_batch(
            params=params,
            model=model,
            HLG=HLG,
            H=H,
            bpe_model=bpe_model,
            batch=batch,
            word_table=word_table,
            G=G,
            sos_id=sos_id,
            eos_id=eos_id,
        )

        for name, (hyps, timestamps_hyp) in hyps_dict.items():
            this_batch = []
            assert len(hyps) == len(texts) and len(timestamps_hyp) == len(
                timestamps_ref
            )
            for cut_id, hyp_words, ref_text, time_hyp, time_ref in zip(
                cut_ids, hyps, texts, timestamps_hyp, timestamps_ref
            ):
                ref_words = ref_text.split()
                this_batch.append((cut_id, ref_words, hyp_words, time_ref, time_hyp))

            results[name].extend(this_batch)

        num_cuts += len(texts)

        if batch_idx % 100 == 0:
            batch_str = f"{batch_idx}/{num_batches}"

            logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
    return results


def save_results(
    params: AttributeDict,
    test_set_name: str,
    results_dict: Dict[
        str,
        List[
            Tuple[
                List[str],
                List[str],
                List[str],
                List[Tuple[float, float]],
                List[Tuple[float, float]],
            ]
        ],
    ],
):
    test_set_wers = dict()
    test_set_delays = dict()
    for key, results in results_dict.items():
        recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
        results = sorted(results)
        store_transcripts_and_timestamps(filename=recog_path, texts=results)
        logging.info(f"The transcripts are stored in {recog_path}")

        # The following prints out WERs, per-word error statistics and aligned
        # ref/hyp pairs.
        errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
        with open(errs_filename, "w") as f:
            wer, mean_delay, var_delay = write_error_stats_with_timestamps(
                f,
                f"{test_set_name}-{key}",
                results,
                enable_log=True,
                with_end_time=True,
            )
            test_set_wers[key] = wer
            test_set_delays[key] = (mean_delay, var_delay)

        logging.info("Wrote detailed error stats to {}".format(errs_filename))

    test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
    errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
    with open(errs_info, "w") as f:
        print("settings\tWER", file=f)
        for key, val in test_set_wers:
            print("{}\t{}".format(key, val), file=f)

    # sort according to the mean start symbol delay
    test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0][0])
    delays_info = (
        params.res_dir / f"symbol-delay-summary-{test_set_name}-{params.suffix}.txt"
    )
    with open(delays_info, "w") as f:
        print("settings\t(start, end) symbol-delay (s) (start, end)", file=f)
        for key, val in test_set_delays:
            print(
                "{}\tmean: {}, variance: {}".format(key, val[0], val[1]),
                file=f,
            )

    s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
    note = "\tbest for {}".format(test_set_name)
    for key, val in test_set_wers:
        s += "{}\t{}{}\n".format(key, val, note)
        note = ""
    logging.info(s)

    s = "\nFor {}, (start, end) symbol-delay (s) of different settings are:\n".format(
        test_set_name
    )
    note = "\tbest for {}".format(test_set_name)
    for key, val in test_set_delays:
        s += "{}\tmean: {}, variance: {}{}\n".format(key, val[0], val[1], note)
        note = ""
    logging.info(s)


@torch.no_grad()
def main():
    parser = get_parser()
    LibriSpeechAsrDataModule.add_arguments(parser)
    args = parser.parse_args()
    args.exp_dir = Path(args.exp_dir)
    args.lang_dir = Path(args.lang_dir)
    args.lm_dir = Path(args.lm_dir)

    params = get_params()
    # add decoding params
    params.update(get_decoding_params())
    params.update(vars(args))

    assert params.decoding_method in (
        "ctc-greedy-search",
        "ctc-decoding",
        "1best",
        "nbest",
        "nbest-rescoring",
        "whole-lattice-rescoring",
        "nbest-oracle",
    )
    params.res_dir = params.exp_dir / params.decoding_method

    if params.iter > 0:
        params.suffix = f"iter-{params.iter}-avg-{params.avg}"
    else:
        params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"

    if params.simulate_streaming:
        params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
        params.suffix += f"-left-context-{params.left_context}"

    if params.simulate_streaming:
        assert (
            params.causal_convolution
        ), "Decoding in streaming requires causal convolution"

    if params.use_averaged_model:
        params.suffix += "-use-averaged-model"

    setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
    logging.info("Decoding started")

    device = torch.device("cpu")
    if torch.cuda.is_available():
        device = torch.device("cuda", 0)

    logging.info(f"Device: {device}")
    logging.info(params)

    lexicon = Lexicon(params.lang_dir)
    max_token_id = max(lexicon.tokens)
    num_classes = max_token_id + 1  # +1 for the blank

    graph_compiler = BpeCtcTrainingGraphCompiler(
        params.lang_dir,
        device=device,
        sos_token="<sos/eos>",
        eos_token="<sos/eos>",
    )
    sos_id = graph_compiler.sos_id
    eos_id = graph_compiler.eos_id

    params.vocab_size = num_classes
    params.sos_id = sos_id
    params.eos_id = eos_id

    if params.decoding_method in ["ctc-decoding", "ctc-greedy-search"]:
        HLG = None
        H = k2.ctc_topo(
            max_token=max_token_id,
            modified=False,
            device=device,
        )
        bpe_model = spm.SentencePieceProcessor()
        bpe_model.load(str(params.lang_dir / "bpe.model"))
    else:
        H = None
        bpe_model = None
        HLG = k2.Fsa.from_dict(
            torch.load(f"{params.lang_dir}/HLG.pt", map_location=device)
        )
        assert HLG.requires_grad is False

        HLG.scores *= params.hlg_scale
        if not hasattr(HLG, "lm_scores"):
            HLG.lm_scores = HLG.scores.clone()

    if params.decoding_method in (
        "nbest-rescoring",
        "whole-lattice-rescoring",
    ):
        if not (params.lm_dir / "G_4_gram.pt").is_file():
            logging.info("Loading G_4_gram.fst.txt")
            logging.warning("It may take 8 minutes.")
            with open(params.lm_dir / "G_4_gram.fst.txt") as f:
                first_word_disambig_id = lexicon.word_table["#0"]

                G = k2.Fsa.from_openfst(f.read(), acceptor=False)
                # G.aux_labels is not needed in later computations, so
                # remove it here.
                del G.aux_labels
                # CAUTION: The following line is crucial.
                # Arcs entering the back-off state have label equal to #0.
                # We have to change it to 0 here.
                G.labels[G.labels >= first_word_disambig_id] = 0
                # See https://github.com/k2-fsa/k2/issues/874
                # for why we need to set G.properties to None
                G.__dict__["_properties"] = None
                G = k2.Fsa.from_fsas([G]).to(device)
                G = k2.arc_sort(G)
                # Save a dummy value so that it can be loaded in C++.
                # See https://github.com/pytorch/pytorch/issues/67902
                # for why we need to do this.
                G.dummy = 1

                torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt")
        else:
            logging.info("Loading pre-compiled G_4_gram.pt")
            d = torch.load(params.lm_dir / "G_4_gram.pt", map_location=device)
            G = k2.Fsa.from_dict(d)

        if params.decoding_method == "whole-lattice-rescoring":
            # Add epsilon self-loops to G as we will compose
            # it with the whole lattice later
            G = k2.add_epsilon_self_loops(G)
            G = k2.arc_sort(G)
            G = G.to(device)

        # G.lm_scores is used to replace HLG.lm_scores during
        # LM rescoring.
        G.lm_scores = G.scores.clone()
    else:
        G = None

    logging.info("About to create model")
    model = get_ctc_model(params)

    if not params.use_averaged_model:
        if params.iter > 0:
            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
                : params.avg
            ]
            if len(filenames) == 0:
                raise ValueError(
                    f"No checkpoints found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            elif len(filenames) < params.avg:
                raise ValueError(
                    f"Not enough checkpoints ({len(filenames)}) found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            logging.info(f"averaging {filenames}")
            model.to(device)
            model.load_state_dict(average_checkpoints(filenames, device=device))
        elif params.avg == 1:
            load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
        else:
            start = params.epoch - params.avg + 1
            filenames = []
            for i in range(start, params.epoch + 1):
                if i >= 1:
                    filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
            logging.info(f"averaging {filenames}")
            model.to(device)
            model.load_state_dict(average_checkpoints(filenames, device=device))
    else:
        if params.iter > 0:
            filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
                : params.avg + 1
            ]
            if len(filenames) == 0:
                raise ValueError(
                    f"No checkpoints found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            elif len(filenames) < params.avg + 1:
                raise ValueError(
                    f"Not enough checkpoints ({len(filenames)}) found for"
                    f" --iter {params.iter}, --avg {params.avg}"
                )
            filename_start = filenames[-1]
            filename_end = filenames[0]
            logging.info(
                "Calculating the averaged model over iteration checkpoints"
                f" from {filename_start} (excluded) to {filename_end}"
            )
            model.to(device)
            model.load_state_dict(
                average_checkpoints_with_averaged_model(
                    filename_start=filename_start,
                    filename_end=filename_end,
                    device=device,
                )
            )
        else:
            assert params.avg > 0, params.avg
            start = params.epoch - params.avg
            assert start >= 1, start
            filename_start = f"{params.exp_dir}/epoch-{start}.pt"
            filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
            logging.info(
                f"Calculating the averaged model over epoch range from "
                f"{start} (excluded) to {params.epoch}"
            )
            model.to(device)
            model.load_state_dict(
                average_checkpoints_with_averaged_model(
                    filename_start=filename_start,
                    filename_end=filename_end,
                    device=device,
                )
            )

    model.to(device)
    model.eval()

    num_param = sum([p.numel() for p in model.parameters()])
    logging.info(f"Number of model parameters: {num_param}")

    # we need cut ids to display recognition results.
    args.return_cuts = True
    librispeech = LibriSpeechAsrDataModule(args)

    test_clean_cuts = librispeech.test_clean_cuts()
    #test_other_cuts = librispeech.test_other_cuts()

    test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
    #test_other_dl = librispeech.test_dataloaders(test_other_cuts)

    #test_sets = ["test-clean", "test-other"]
    #test_dl = [test_clean_dl, test_other_dl]
    
    test_sets = ["test-clean"]
    test_dl = [test_clean_dl]

    for test_set, test_dl in zip(test_sets, test_dl):
        results_dict = decode_dataset(
            dl=test_dl,
            params=params,
            model=model,
            HLG=HLG,
            H=H,
            bpe_model=bpe_model,
            word_table=lexicon.word_table,
            G=G,
            sos_id=sos_id,
            eos_id=eos_id,
        )

        save_results(
            params=params,
            test_set_name=test_set,
            results_dict=results_dict,
        )

    logging.info("Done!")


if __name__ == "__main__":
    main()