File size: 21,140 Bytes
46455cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b6b6ded1-0a58-43cb-9065-4f4fae02a01b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import argparse\n",
    "import logging\n",
    "import math\n",
    "import re\n",
    "from typing import List\n",
    "import sys\n",
    "sys.path.append('/opt/notebooks/err2020/conformer_ctc3/')\n",
    "import k2\n",
    "import kaldifeat\n",
    "import sentencepiece as spm\n",
    "import torch\n",
    "import torchaudio\n",
    "from decode import get_decoding_params\n",
    "from torch.nn.utils.rnn import pad_sequence\n",
    "from train import add_model_arguments, get_params\n",
    "\n",
    "from icefall.decode import (\n",
    "    get_lattice,\n",
    "    one_best_decoding,\n",
    "    rescore_with_n_best_list,\n",
    "    rescore_with_whole_lattice\n",
    ")\n",
    "from icefall.utils import get_texts, parse_fsa_timestamps_and_texts"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "52514f2f-1195-4e4f-8174-d21aa7462476",
   "metadata": {},
   "source": [
    "## Helpers"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8ec024bf-7f91-47a9-9293-822fe2765c4b",
   "metadata": {},
   "source": [
    "#### Load args helpers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3d69d771-b421-417f-a6ff-e1d1c64ba934",
   "metadata": {},
   "outputs": [],
   "source": [
    "class Args:\n",
    "    model_filename='conformer_ctc3/exp/jit_trace.pt'\n",
    "    bpe_model_filename=\"data/lang_bpe_500/bpe.model\"\n",
    "    method=\"ctc-decoding\"\n",
    "    sample_rate=16000\n",
    "    num_classes=500 #bpe model size\n",
    "    frame_shift_ms=10\n",
    "    dither=0\n",
    "    snip_edges=False\n",
    "    num_bins=80\n",
    "    device='cpu'\n",
    "    \n",
    "    def args_from_dict(self, dct):\n",
    "        for key in dct:\n",
    "            setattr(self, key, dct[key])\n",
    "            \n",
    "    def __repr__(self):\n",
    "        text=''\n",
    "        for k, v in self.__dict__.items():\n",
    "                text+=f'{k} = {v}\\n'\n",
    "        return text"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "57a3cd62-3037-4c99-9094-dd63429e660e",
   "metadata": {},
   "source": [
    "#### Decoder helper"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "48306369-fb68-4abe-be62-0806d00059f8",
   "metadata": {},
   "outputs": [],
   "source": [
    "class ConformerCtc3Decoder:\n",
    "    def __init__(self, params_dct=None):\n",
    "        logging.info('loading args')\n",
    "        self.args=Args()\n",
    "        if params_dct is not None:\n",
    "            self.args.args_from_dict(params_dct)\n",
    "        logging.info('loading model')\n",
    "        self.load_model()\n",
    "        logging.info('loading fbank')\n",
    "        self.get_fbank()\n",
    "        \n",
    "    def update_args(self, dct):\n",
    "        self.args.args_from_dict(dct)\n",
    "        \n",
    "    def load_model_(self, model_filename, device):\n",
    "        device = torch.device(\"cpu\")\n",
    "        model = torch.jit.load(model_filename)\n",
    "        model.to(device)\n",
    "        model=model.eval()\n",
    "        self.model=model\n",
    "        \n",
    "    def load_model(self, model_filename=None, device=None):\n",
    "        if model_filename is not None:\n",
    "            self.args.model_filename=model_filename\n",
    "        if device is not None:\n",
    "            self.args.device=device\n",
    "        self.load_model_(self.args.model_filename, self.args.device)\n",
    "        \n",
    "    def get_fbank_(self, device='cpu'):\n",
    "        opts = kaldifeat.FbankOptions()\n",
    "        opts.device = device\n",
    "        opts.frame_opts.dither = self.args.dither\n",
    "        opts.frame_opts.snip_edges = self.args.snip_edges\n",
    "        #opts.frame_opts.samp_freq = sample_rate\n",
    "        opts.mel_opts.num_bins = self.args.num_bins\n",
    "\n",
    "        fbank = kaldifeat.Fbank(opts)\n",
    "        return fbank\n",
    "        \n",
    "    def get_fbank(self):\n",
    "        self.fbank=self.get_fbank_(self.args.device)\n",
    "        \n",
    "    def read_sound_file_(self, filename: str, expected_sample_rate: float ) -> List[torch.Tensor]:\n",
    "        \"\"\"Read a sound file into a 1-D float32 torch tensor.\n",
    "        Args:\n",
    "          filenames:\n",
    "            A list of sound filenames.\n",
    "          expected_sample_rate:\n",
    "            The expected sample rate of the sound files.\n",
    "        Returns:\n",
    "          Return a 1-D float32 torch tensor.\n",
    "        \"\"\"\n",
    "        wave, sample_rate = torchaudio.load(filename)\n",
    "        assert sample_rate == expected_sample_rate, (\n",
    "            f\"expected sample rate: {expected_sample_rate}. \" f\"Given: {sample_rate}\"\n",
    "        )\n",
    "         # We use only the first channel\n",
    "        return wave[0]\n",
    "    \n",
    "    def format_trs(self, hyp, timestamps):\n",
    "        if len(hyp)!=len(timestamps):\n",
    "            print(f'len of hyp and timestamps is not the same len hyp {len(hyp)} and len of timestamps {len(timestamps)}')\n",
    "            return None\n",
    "        trs ={'text': ' '.join(hyp),\n",
    "             'words': [{'word': w, 'start':timestamps[i][0], 'end': timestamps[i][1]} for i, w in enumerate(hyp)]\n",
    "             }\n",
    "        return trs\n",
    "    \n",
    "    def decode_(self, wave, fbank, model, device, method, bpe_model_filename, num_classes, \n",
    "          min_active_states, max_active_states, subsampling_factor, use_double_scores, \n",
    "          frame_shift_ms, search_beam, output_beam):\n",
    " \n",
    "        wave = [wave.to(device)]\n",
    "        logging.info(\"Decoding started\")\n",
    "        features = fbank(wave)\n",
    "        feature_lengths = [f.size(0) for f in features]\n",
    "\n",
    "        features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))\n",
    "        feature_lengths = torch.tensor(feature_lengths, device=device)\n",
    "\n",
    "        nnet_output, _ = model(features, feature_lengths)\n",
    "\n",
    "        batch_size = nnet_output.shape[0]\n",
    "        supervision_segments = torch.tensor(\n",
    "            [\n",
    "                [i, 0, feature_lengths[i] // subsampling_factor]\n",
    "                for i in range(batch_size)\n",
    "            ],\n",
    "            dtype=torch.int32,\n",
    "        )\n",
    "\n",
    "        if method == \"ctc-decoding\":\n",
    "            logging.info(\"Use CTC decoding\")\n",
    "            bpe_model = spm.SentencePieceProcessor()\n",
    "            bpe_model.load(bpe_model_filename)\n",
    "            max_token_id = num_classes - 1\n",
    "\n",
    "            H = k2.ctc_topo(\n",
    "                max_token=max_token_id,\n",
    "                modified=False,\n",
    "                device=device,\n",
    "            )\n",
    "\n",
    "            lattice = get_lattice(\n",
    "                nnet_output=nnet_output,\n",
    "                decoding_graph=H,\n",
    "                supervision_segments=supervision_segments,\n",
    "                search_beam=search_beam,\n",
    "                output_beam=output_beam,\n",
    "                min_active_states=min_active_states,\n",
    "                max_active_states=max_active_states,\n",
    "                subsampling_factor=subsampling_factor,\n",
    "            )\n",
    "\n",
    "            best_path = one_best_decoding(\n",
    "                lattice=lattice, use_double_scores=use_double_scores\n",
    "            )\n",
    "\n",
    "            confidence=best_path.get_tot_scores(use_double_scores=False, log_semiring=False).detach()[0]\n",
    "\n",
    "            timestamps, hyps = parse_fsa_timestamps_and_texts(\n",
    "                best_paths=best_path,\n",
    "                sp=bpe_model,\n",
    "                subsampling_factor=subsampling_factor,\n",
    "                frame_shift_ms=frame_shift_ms,\n",
    "            )\n",
    "            logging.info(f'confidence {confidence}')\n",
    "            logging.info(timestamps)\n",
    "            token_ids = get_texts(best_path)\n",
    "            return self.format_trs(hyps[0], timestamps[0])\n",
    "    \n",
    "    def transcribe_file(self, audio_filename):\n",
    "        wave=self.read_sound_file_(audio_filename, expected_sample_rate=self.args.sample_rate)\n",
    "        \n",
    "        trs=self.decode_(wave, self.fbank, self.model, self.args.device, self.args.method, \n",
    "                         self.args.bpe_model_filename, self.args.num_classes,\n",
    "                         self.args.min_active_states, self.args.max_active_states, \n",
    "                         self.args.subsampling_factor, self.args.use_double_scores, \n",
    "                         self.args.frame_shift_ms, self.args.search_beam, self.args.output_beam)\n",
    "        return trs"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b1464957-05b6-40f8-a1aa-c58edbed440c",
   "metadata": {},
   "source": [
    "## Example usage"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "50ab7c8e-39b6-4783-8342-e79e91d2417e",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "fatal: not a git repository (or any parent up to mount point /opt)\n",
      "Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n",
      "fatal: not a git repository (or any parent up to mount point /opt)\n",
      "Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n",
      "fatal: not a git repository (or any parent up to mount point /opt)\n",
      "Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\n"
     ]
    }
   ],
   "source": [
    "#create transcriber/decoder object\n",
    "#if you want to change parameters (for example model filename) you could create a dict (see class Args attribute names)\n",
    "#and add it to as argument decoder initialization:\n",
    "#conformerCtc3Decoder(get_params() | get_decoding_params() | {'model_filename':'my new model filename'})\n",
    "transcriber=ConformerCtc3Decoder(get_params() | get_decoding_params())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "8020f371-7584-4f6c-990b-f2c023e24060",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 4.86 s, sys: 435 ms, total: 5.29 s\n",
      "Wall time: 4.45 s\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'text': 'mina tahaksin homme täna ja homme kui saan all kolm krantsumadiseid veiki panna',\n",
       " 'words': [{'word': 'mina', 'start': 0.8, 'end': 0.84},\n",
       "  {'word': 'tahaksin', 'start': 1.0, 'end': 1.32},\n",
       "  {'word': 'homme', 'start': 1.48, 'end': 1.76},\n",
       "  {'word': 'täna', 'start': 2.08, 'end': 2.12},\n",
       "  {'word': 'ja', 'start': 3.72, 'end': 3.76},\n",
       "  {'word': 'homme', 'start': 4.16, 'end': 4.44},\n",
       "  {'word': 'kui', 'start': 5.96, 'end': 6.0},\n",
       "  {'word': 'saan', 'start': 6.52, 'end': 6.84},\n",
       "  {'word': 'all', 'start': 7.36, 'end': 7.4},\n",
       "  {'word': 'kolm', 'start': 8.32, 'end': 8.36},\n",
       "  {'word': 'krantsumadiseid', 'start': 8.68, 'end': 9.72},\n",
       "  {'word': 'veiki', 'start': 9.76, 'end': 10.04},\n",
       "  {'word': 'panna', 'start': 10.16, 'end': 10.4}]}"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#transribe audiofile (NB! model assumes sample rate of 16000)\n",
    "%time transcriber.transcribe_file('audio/emt16k.wav')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "4d2a480d-f0aa-4474-bfdb-ad298a629ce5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 16.2 s, sys: 1.8 s, total: 18 s\n",
      "Wall time: 15.1 s\n"
     ]
    }
   ],
   "source": [
    "%time trs=transcriber.transcribe_file('audio/oden_kypsis16k.wav')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "d3827548-bca0-4409-95bc-9aa8ba377135",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'text': 'enamus ajast nagu klikkid neid allserva tekivad need luba küpsiseid mis on nagu ilusti kohati tõlgitud eesti keelde see idee arusaadavamaks ma tean et see on kukis inglise kees ma ei saa sellest ka aru nagu mis asi on kukis on ju ma saan aru et ta vaid minee eest ära luba küpsises tava ei anna noh anna minna ma luban küpssi juhmaoloog okei on ju ma ei tea mis ta teeb lihtsalt selle eestikeelseks tõlk või eesti keelde tõlkimine kui teinud seda nagu arusaadavamaks küpsised kuule kuule veebisaid küsib sinu käest tahad tähendab on okei kui me neid kugiseid kasutame sa mingi ja mida iga mul täiesti savi või noh et et jah',\n",
       " 'words': [{'word': 'enamus', 'start': 3.56, 'end': 3.8},\n",
       "  {'word': 'ajast', 'start': 3.8, 'end': 4.04},\n",
       "  {'word': 'nagu', 'start': 4.2, 'end': 4.24},\n",
       "  {'word': 'klikkid', 'start': 4.72, 'end': 5.12},\n",
       "  {'word': 'neid', 'start': 5.16, 'end': 5.2},\n",
       "  {'word': 'allserva', 'start': 5.72, 'end': 6.2},\n",
       "  {'word': 'tekivad', 'start': 6.32, 'end': 6.64},\n",
       "  {'word': 'need', 'start': 7.4, 'end': 7.44},\n",
       "  {'word': 'luba', 'start': 7.72, 'end': 8.0},\n",
       "  {'word': 'küpsiseid', 'start': 8.08, 'end': 8.64},\n",
       "  {'word': 'mis', 'start': 9.68, 'end': 9.72},\n",
       "  {'word': 'on', 'start': 9.76, 'end': 9.8},\n",
       "  {'word': 'nagu', 'start': 9.92, 'end': 9.96},\n",
       "  {'word': 'ilusti', 'start': 10.04, 'end': 10.36},\n",
       "  {'word': 'kohati', 'start': 10.4, 'end': 10.68},\n",
       "  {'word': 'tõlgitud', 'start': 11.08, 'end': 11.4},\n",
       "  {'word': 'eesti', 'start': 11.6, 'end': 11.64},\n",
       "  {'word': 'keelde', 'start': 11.8, 'end': 12.08},\n",
       "  {'word': 'see', 'start': 12.68, 'end': 12.72},\n",
       "  {'word': 'idee', 'start': 12.8, 'end': 13.04},\n",
       "  {'word': 'arusaadavamaks', 'start': 13.2, 'end': 13.8},\n",
       "  {'word': 'ma', 'start': 13.92, 'end': 13.96},\n",
       "  {'word': 'tean', 'start': 14.04, 'end': 14.24},\n",
       "  {'word': 'et', 'start': 14.28, 'end': 14.36},\n",
       "  {'word': 'see', 'start': 14.4, 'end': 14.44},\n",
       "  {'word': 'on', 'start': 14.44, 'end': 14.52},\n",
       "  {'word': 'kukis', 'start': 14.56, 'end': 14.92},\n",
       "  {'word': 'inglise', 'start': 14.92, 'end': 15.2},\n",
       "  {'word': 'kees', 'start': 15.2, 'end': 15.44},\n",
       "  {'word': 'ma', 'start': 15.84, 'end': 15.88},\n",
       "  {'word': 'ei', 'start': 15.92, 'end': 16.0},\n",
       "  {'word': 'saa', 'start': 16.04, 'end': 16.08},\n",
       "  {'word': 'sellest', 'start': 16.24, 'end': 16.28},\n",
       "  {'word': 'ka', 'start': 16.56, 'end': 16.6},\n",
       "  {'word': 'aru', 'start': 16.76, 'end': 16.8},\n",
       "  {'word': 'nagu', 'start': 16.96, 'end': 17.0},\n",
       "  {'word': 'mis', 'start': 17.12, 'end': 17.16},\n",
       "  {'word': 'asi', 'start': 17.28, 'end': 17.32},\n",
       "  {'word': 'on', 'start': 17.36, 'end': 17.4},\n",
       "  {'word': 'kukis', 'start': 17.48, 'end': 17.8},\n",
       "  {'word': 'on', 'start': 17.88, 'end': 17.92},\n",
       "  {'word': 'ju', 'start': 17.96, 'end': 18.0},\n",
       "  {'word': 'ma', 'start': 18.28, 'end': 18.32},\n",
       "  {'word': 'saan', 'start': 18.36, 'end': 18.48},\n",
       "  {'word': 'aru', 'start': 18.52, 'end': 18.56},\n",
       "  {'word': 'et', 'start': 18.72, 'end': 18.76},\n",
       "  {'word': 'ta', 'start': 19.2, 'end': 19.24},\n",
       "  {'word': 'vaid', 'start': 19.32, 'end': 19.44},\n",
       "  {'word': 'minee', 'start': 19.48, 'end': 19.68},\n",
       "  {'word': 'eest', 'start': 19.76, 'end': 19.96},\n",
       "  {'word': 'ära', 'start': 20.12, 'end': 20.16},\n",
       "  {'word': 'luba', 'start': 21.56, 'end': 21.88},\n",
       "  {'word': 'küpsises', 'start': 21.96, 'end': 22.44},\n",
       "  {'word': 'tava', 'start': 22.6, 'end': 22.76},\n",
       "  {'word': 'ei', 'start': 22.84, 'end': 22.88},\n",
       "  {'word': 'anna', 'start': 23.0, 'end': 23.16},\n",
       "  {'word': 'noh', 'start': 23.4, 'end': 23.44},\n",
       "  {'word': 'anna', 'start': 23.64, 'end': 23.76},\n",
       "  {'word': 'minna', 'start': 24.0, 'end': 24.04},\n",
       "  {'word': 'ma', 'start': 24.16, 'end': 24.2},\n",
       "  {'word': 'luban', 'start': 24.24, 'end': 24.56},\n",
       "  {'word': 'küpssi', 'start': 24.64, 'end': 24.92},\n",
       "  {'word': 'juhmaoloog', 'start': 25.0, 'end': 25.28},\n",
       "  {'word': 'okei', 'start': 25.28, 'end': 25.56},\n",
       "  {'word': 'on', 'start': 25.64, 'end': 25.72},\n",
       "  {'word': 'ju', 'start': 25.72, 'end': 25.76},\n",
       "  {'word': 'ma', 'start': 25.84, 'end': 25.88},\n",
       "  {'word': 'ei', 'start': 25.92, 'end': 25.96},\n",
       "  {'word': 'tea', 'start': 26.0, 'end': 26.04},\n",
       "  {'word': 'mis', 'start': 26.28, 'end': 26.32},\n",
       "  {'word': 'ta', 'start': 26.36, 'end': 26.4},\n",
       "  {'word': 'teeb', 'start': 26.56, 'end': 26.8},\n",
       "  {'word': 'lihtsalt', 'start': 27.04, 'end': 27.08},\n",
       "  {'word': 'selle', 'start': 27.24, 'end': 27.28},\n",
       "  {'word': 'eestikeelseks', 'start': 28.04, 'end': 28.68},\n",
       "  {'word': 'tõlk', 'start': 28.8, 'end': 29.08},\n",
       "  {'word': 'või', 'start': 29.16, 'end': 29.2},\n",
       "  {'word': 'eesti', 'start': 29.48, 'end': 29.52},\n",
       "  {'word': 'keelde', 'start': 29.68, 'end': 30.04},\n",
       "  {'word': 'tõlkimine', 'start': 30.2, 'end': 30.68},\n",
       "  {'word': 'kui', 'start': 30.8, 'end': 30.84},\n",
       "  {'word': 'teinud', 'start': 30.96, 'end': 31.16},\n",
       "  {'word': 'seda', 'start': 31.2, 'end': 31.24},\n",
       "  {'word': 'nagu', 'start': 31.72, 'end': 31.76},\n",
       "  {'word': 'arusaadavamaks', 'start': 31.88, 'end': 32.6},\n",
       "  {'word': 'küpsised', 'start': 33.52, 'end': 33.88},\n",
       "  {'word': 'kuule', 'start': 36.96, 'end': 37.08},\n",
       "  {'word': 'kuule', 'start': 37.32, 'end': 37.44},\n",
       "  {'word': 'veebisaid', 'start': 37.8, 'end': 38.28},\n",
       "  {'word': 'küsib', 'start': 38.44, 'end': 38.56},\n",
       "  {'word': 'sinu', 'start': 38.6, 'end': 38.72},\n",
       "  {'word': 'käest', 'start': 38.76, 'end': 39.0},\n",
       "  {'word': 'tahad', 'start': 39.52, 'end': 39.72},\n",
       "  {'word': 'tähendab', 'start': 40.32, 'end': 40.36},\n",
       "  {'word': 'on', 'start': 40.8, 'end': 40.88},\n",
       "  {'word': 'okei', 'start': 40.88, 'end': 41.2},\n",
       "  {'word': 'kui', 'start': 41.24, 'end': 41.28},\n",
       "  {'word': 'me', 'start': 41.36, 'end': 41.4},\n",
       "  {'word': 'neid', 'start': 41.6, 'end': 41.64},\n",
       "  {'word': 'kugiseid', 'start': 42.2, 'end': 42.64},\n",
       "  {'word': 'kasutame', 'start': 42.8, 'end': 43.08},\n",
       "  {'word': 'sa', 'start': 43.56, 'end': 43.6},\n",
       "  {'word': 'mingi', 'start': 43.8, 'end': 43.84},\n",
       "  {'word': 'ja', 'start': 44.04, 'end': 44.08},\n",
       "  {'word': 'mida', 'start': 44.28, 'end': 44.32},\n",
       "  {'word': 'iga', 'start': 44.44, 'end': 44.48},\n",
       "  {'word': 'mul', 'start': 44.56, 'end': 44.6},\n",
       "  {'word': 'täiesti', 'start': 44.92, 'end': 44.96},\n",
       "  {'word': 'savi', 'start': 45.08, 'end': 45.28},\n",
       "  {'word': 'või', 'start': 45.36, 'end': 45.4},\n",
       "  {'word': 'noh', 'start': 45.44, 'end': 45.48},\n",
       "  {'word': 'et', 'start': 45.6, 'end': 45.64},\n",
       "  {'word': 'et', 'start': 47.36, 'end': 47.4},\n",
       "  {'word': 'jah', 'start': 47.56, 'end': 47.68}]}"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ea3b25b7-a1f9-4b21-911d-35159c5f3009",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}