|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import inspect |
|
import logging |
|
from functools import lru_cache |
|
from pathlib import Path |
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy |
|
from lhotse.dataset import ( |
|
CutConcatenate, |
|
CutMix, |
|
DynamicBucketingSampler, |
|
K2SpeechRecognitionDataset, |
|
PrecomputedFeatures, |
|
SingleCutSampler, |
|
SpecAugment, |
|
) |
|
from lhotse.dataset.input_strategies import ( |
|
AudioSamples, |
|
OnTheFlyFeatures, |
|
) |
|
from lhotse.utils import fix_random_seed |
|
from torch.utils.data import DataLoader |
|
|
|
from icefall.utils import str2bool |
|
|
|
|
|
class _SeedWorkers: |
|
def __init__(self, seed: int): |
|
self.seed = seed |
|
|
|
def __call__(self, worker_id: int): |
|
fix_random_seed(self.seed + worker_id) |
|
|
|
|
|
class LibriSpeechAsrDataModule: |
|
""" |
|
DataModule for k2 ASR experiments. |
|
It assumes there is always one train and valid dataloader, |
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean |
|
and test-other). |
|
|
|
It contains all the common data pipeline modules used in ASR |
|
experiments, e.g.: |
|
- dynamic batch size, |
|
- bucketing samplers, |
|
- cut concatenation, |
|
- augmentation, |
|
- on-the-fly feature extraction |
|
|
|
This class should be derived for specific corpora used in ASR tasks. |
|
""" |
|
|
|
def __init__(self, args: argparse.Namespace): |
|
self.args = args |
|
|
|
@classmethod |
|
def add_arguments(cls, parser: argparse.ArgumentParser): |
|
group = parser.add_argument_group( |
|
title="ASR data related options", |
|
description="These options are used for the preparation of " |
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the " |
|
"effective batch sizes, sampling strategies, applied data " |
|
"augmentations, etc.", |
|
) |
|
group.add_argument( |
|
"--full-libri", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.", |
|
) |
|
group.add_argument( |
|
"--manifest-dir", |
|
type=Path, |
|
default=Path("data/fbank"), |
|
help="Path to directory with train/valid/test cuts.", |
|
) |
|
group.add_argument( |
|
"--max-duration", |
|
type=int, |
|
default=200.0, |
|
help="Maximum pooled recordings duration (seconds) in a " |
|
"single batch. You can reduce it if it causes CUDA OOM.", |
|
) |
|
group.add_argument( |
|
"--bucketing-sampler", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled, the batches will come from buckets of " |
|
"similar duration (saves padding frames).", |
|
) |
|
group.add_argument( |
|
"--num-buckets", |
|
type=int, |
|
default=30, |
|
help="The number of buckets for the DynamicBucketingSampler" |
|
"(you might want to increase it for larger datasets).", |
|
) |
|
group.add_argument( |
|
"--concatenate-cuts", |
|
type=str2bool, |
|
default=False, |
|
help="When enabled, utterances (cuts) will be concatenated " |
|
"to minimize the amount of padding.", |
|
) |
|
group.add_argument( |
|
"--duration-factor", |
|
type=float, |
|
default=1.0, |
|
help="Determines the maximum duration of a concatenated cut " |
|
"relative to the duration of the longest cut in a batch.", |
|
) |
|
group.add_argument( |
|
"--gap", |
|
type=float, |
|
default=1.0, |
|
help="The amount of padding (in seconds) inserted between " |
|
"concatenated cuts. This padding is filled with noise when " |
|
"noise augmentation is used.", |
|
) |
|
group.add_argument( |
|
"--on-the-fly-feats", |
|
type=str2bool, |
|
default=False, |
|
help="When enabled, use on-the-fly cut mixing and feature " |
|
"extraction. Will drop existing precomputed feature manifests " |
|
"if available.", |
|
) |
|
group.add_argument( |
|
"--shuffle", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled (=default), the examples will be " |
|
"shuffled for each epoch.", |
|
) |
|
group.add_argument( |
|
"--drop-last", |
|
type=str2bool, |
|
default=True, |
|
help="Whether to drop last batch. Used by sampler.", |
|
) |
|
group.add_argument( |
|
"--return-cuts", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled, each batch will have the " |
|
"field: batch['supervisions']['cut'] with the cuts that " |
|
"were used to construct it.", |
|
) |
|
|
|
group.add_argument( |
|
"--num-workers", |
|
type=int, |
|
default=2, |
|
help="The number of training dataloader workers that " |
|
"collect the batches.", |
|
) |
|
|
|
group.add_argument( |
|
"--enable-spec-aug", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled, use SpecAugment for training dataset.", |
|
) |
|
|
|
group.add_argument( |
|
"--spec-aug-time-warp-factor", |
|
type=int, |
|
default=80, |
|
help="Used only when --enable-spec-aug is True. " |
|
"It specifies the factor for time warping in SpecAugment. " |
|
"Larger values mean more warping. " |
|
"A value less than 1 means to disable time warp.", |
|
) |
|
|
|
group.add_argument( |
|
"--enable-musan", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled, select noise from MUSAN and mix it" |
|
"with training dataset. ", |
|
) |
|
|
|
group.add_argument( |
|
"--input-strategy", |
|
type=str, |
|
default="PrecomputedFeatures", |
|
help="AudioSamples or PrecomputedFeatures", |
|
) |
|
|
|
def train_dataloaders( |
|
self, |
|
cuts_train: CutSet, |
|
sampler_state_dict: Optional[Dict[str, Any]] = None, |
|
) -> DataLoader: |
|
""" |
|
Args: |
|
cuts_train: |
|
CutSet for training. |
|
sampler_state_dict: |
|
The state dict for the training sampler. |
|
""" |
|
transforms = [] |
|
if self.args.enable_musan: |
|
logging.info("Enable MUSAN") |
|
logging.info("About to get Musan cuts") |
|
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") |
|
transforms.append( |
|
CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) |
|
) |
|
else: |
|
logging.info("Disable MUSAN") |
|
|
|
if self.args.concatenate_cuts: |
|
logging.info( |
|
f"Using cut concatenation with duration factor " |
|
f"{self.args.duration_factor} and gap {self.args.gap}." |
|
) |
|
|
|
|
|
|
|
transforms = [ |
|
CutConcatenate( |
|
duration_factor=self.args.duration_factor, gap=self.args.gap |
|
) |
|
] + transforms |
|
|
|
input_transforms = [] |
|
if self.args.enable_spec_aug: |
|
logging.info("Enable SpecAugment") |
|
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") |
|
|
|
|
|
|
|
num_frame_masks = 10 |
|
num_frame_masks_parameter = inspect.signature( |
|
SpecAugment.__init__ |
|
).parameters["num_frame_masks"] |
|
if num_frame_masks_parameter.default == 1: |
|
num_frame_masks = 2 |
|
logging.info(f"Num frame mask: {num_frame_masks}") |
|
input_transforms.append( |
|
SpecAugment( |
|
time_warp_factor=self.args.spec_aug_time_warp_factor, |
|
num_frame_masks=num_frame_masks, |
|
features_mask_size=27, |
|
num_feature_masks=2, |
|
frames_mask_size=100, |
|
) |
|
) |
|
else: |
|
logging.info("Disable SpecAugment") |
|
|
|
logging.info("About to create train dataset") |
|
train = K2SpeechRecognitionDataset( |
|
input_strategy=eval(self.args.input_strategy)(), |
|
cut_transforms=transforms, |
|
input_transforms=input_transforms, |
|
return_cuts=self.args.return_cuts, |
|
) |
|
|
|
if self.args.on_the_fly_feats: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train = K2SpeechRecognitionDataset( |
|
cut_transforms=transforms, |
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), |
|
input_transforms=input_transforms, |
|
return_cuts=self.args.return_cuts, |
|
) |
|
|
|
if self.args.bucketing_sampler: |
|
logging.info("Using DynamicBucketingSampler.") |
|
train_sampler = DynamicBucketingSampler( |
|
cuts_train, |
|
max_duration=self.args.max_duration, |
|
shuffle=self.args.shuffle, |
|
num_buckets=self.args.num_buckets, |
|
drop_last=self.args.drop_last, |
|
) |
|
else: |
|
logging.info("Using SingleCutSampler.") |
|
train_sampler = SingleCutSampler( |
|
cuts_train, |
|
max_duration=self.args.max_duration, |
|
shuffle=self.args.shuffle, |
|
) |
|
logging.info("About to create train dataloader") |
|
|
|
if sampler_state_dict is not None: |
|
logging.info("Loading sampler state dict") |
|
train_sampler.load_state_dict(sampler_state_dict) |
|
|
|
|
|
|
|
seed = torch.randint(0, 100000, ()).item() |
|
worker_init_fn = _SeedWorkers(seed) |
|
|
|
train_dl = DataLoader( |
|
train, |
|
sampler=train_sampler, |
|
batch_size=None, |
|
num_workers=self.args.num_workers, |
|
persistent_workers=False, |
|
worker_init_fn=worker_init_fn, |
|
) |
|
|
|
return train_dl |
|
|
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: |
|
transforms = [] |
|
if self.args.concatenate_cuts: |
|
transforms = [ |
|
CutConcatenate( |
|
duration_factor=self.args.duration_factor, gap=self.args.gap |
|
) |
|
] + transforms |
|
|
|
logging.info("About to create dev dataset") |
|
if self.args.on_the_fly_feats: |
|
validate = K2SpeechRecognitionDataset( |
|
cut_transforms=transforms, |
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), |
|
return_cuts=self.args.return_cuts, |
|
) |
|
else: |
|
validate = K2SpeechRecognitionDataset( |
|
cut_transforms=transforms, |
|
return_cuts=self.args.return_cuts, |
|
) |
|
valid_sampler = DynamicBucketingSampler( |
|
cuts_valid, |
|
max_duration=self.args.max_duration, |
|
shuffle=False, |
|
) |
|
logging.info("About to create dev dataloader") |
|
valid_dl = DataLoader( |
|
validate, |
|
sampler=valid_sampler, |
|
batch_size=None, |
|
num_workers=2, |
|
persistent_workers=False, |
|
) |
|
|
|
return valid_dl |
|
|
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader: |
|
logging.debug("About to create test dataset") |
|
test = K2SpeechRecognitionDataset( |
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) |
|
if self.args.on_the_fly_feats |
|
else eval(self.args.input_strategy)(), |
|
return_cuts=self.args.return_cuts, |
|
) |
|
sampler = DynamicBucketingSampler( |
|
cuts, |
|
max_duration=self.args.max_duration, |
|
shuffle=False, |
|
) |
|
logging.debug("About to create test dataloader") |
|
test_dl = DataLoader( |
|
test, |
|
batch_size=None, |
|
sampler=sampler, |
|
num_workers=self.args.num_workers, |
|
) |
|
return test_dl |
|
|
|
@lru_cache() |
|
def train_clean_100_cuts(self) -> CutSet: |
|
logging.info("About to get train-clean-100 cuts") |
|
return load_manifest_lazy( |
|
self.args.manifest_dir / "err2020_cuts_train.jsonl.gz" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@lru_cache() |
|
def train_all_shuf_cuts(self) -> CutSet: |
|
logging.info( |
|
"About to get the shuffled train-clean-100, \ |
|
train-clean-360 and train-other-500 cuts" |
|
) |
|
return load_manifest_lazy( |
|
|
|
self.args.manifest_dir / "err2020_cuts_train-all-shuf.jsonl.gz" |
|
) |
|
|
|
@lru_cache() |
|
def dev_clean_cuts(self) -> CutSet: |
|
logging.info("About to get dev-clean cuts") |
|
return load_manifest_lazy( |
|
|
|
self.args.manifest_dir / "err2020_cuts_validation.jsonl.gz" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@lru_cache() |
|
def test_clean_cuts(self) -> CutSet: |
|
logging.info("About to get test-clean cuts") |
|
return load_manifest_lazy( |
|
|
|
self.args.manifest_dir / "err2020_cuts_test.jsonl.gz" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|