|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
import random |
|
from itertools import repeat |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.backends.cudnn.rnn as rnn |
|
import torch.nn as nn |
|
from torch import _VF, Tensor |
|
|
|
from icefall.utils import is_jit_tracing |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
_single = _ntuple(1) |
|
_pair = _ntuple(2) |
|
|
|
|
|
class ActivationBalancerFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: Tensor, |
|
channel_dim: int, |
|
min_positive: float, |
|
max_positive: float, |
|
max_factor: float, |
|
min_abs: float, |
|
max_abs: float, |
|
) -> Tensor: |
|
if x.requires_grad: |
|
if channel_dim < 0: |
|
channel_dim += x.ndim |
|
|
|
|
|
|
|
|
|
sum_dims = [] |
|
for d in range(x.ndim): |
|
if d != channel_dim: |
|
sum_dims.append(d) |
|
|
|
xgt0 = x > 0 |
|
proportion_positive = torch.mean( |
|
xgt0.to(x.dtype), dim=sum_dims, keepdim=True |
|
) |
|
factor1 = ( |
|
(min_positive - proportion_positive).relu() |
|
* (max_factor / min_positive) |
|
if min_positive != 0.0 |
|
else 0.0 |
|
) |
|
factor2 = ( |
|
(proportion_positive - max_positive).relu() |
|
* (max_factor / (max_positive - 1.0)) |
|
if max_positive != 1.0 |
|
else 0.0 |
|
) |
|
factor = factor1 + factor2 |
|
if isinstance(factor, float): |
|
factor = torch.zeros_like(proportion_positive) |
|
|
|
mean_abs = torch.mean(x.abs(), dim=sum_dims, keepdim=True) |
|
below_threshold = mean_abs < min_abs |
|
above_threshold = mean_abs > max_abs |
|
|
|
ctx.save_for_backward(factor, xgt0, below_threshold, above_threshold) |
|
ctx.max_factor = max_factor |
|
ctx.sum_dims = sum_dims |
|
return x |
|
|
|
@staticmethod |
|
def backward( |
|
ctx, x_grad: Tensor |
|
) -> Tuple[Tensor, None, None, None, None, None, None]: |
|
factor, xgt0, below_threshold, above_threshold = ctx.saved_tensors |
|
dtype = x_grad.dtype |
|
scale_factor = ( |
|
(below_threshold.to(dtype) - above_threshold.to(dtype)) |
|
* (xgt0.to(dtype) - 0.5) |
|
* (ctx.max_factor * 2.0) |
|
) |
|
|
|
neg_delta_grad = x_grad.abs() * (factor + scale_factor) |
|
return x_grad - neg_delta_grad, None, None, None, None, None, None |
|
|
|
|
|
class GradientFilterFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: Tensor, |
|
batch_dim: int, |
|
threshold: float, |
|
*params: Tensor, |
|
) -> Tuple[Tensor, ...]: |
|
if x.requires_grad: |
|
if batch_dim < 0: |
|
batch_dim += x.ndim |
|
ctx.batch_dim = batch_dim |
|
ctx.threshold = threshold |
|
return (x,) + params |
|
|
|
@staticmethod |
|
def backward( |
|
ctx, |
|
x_grad: Tensor, |
|
*param_grads: Tensor, |
|
) -> Tuple[Tensor, ...]: |
|
eps = 1.0e-20 |
|
dim = ctx.batch_dim |
|
norm_dims = [d for d in range(x_grad.ndim) if d != dim] |
|
norm_of_batch = (x_grad**2).mean(dim=norm_dims, keepdim=True).sqrt() |
|
median_norm = norm_of_batch.median() |
|
|
|
cutoff = median_norm * ctx.threshold |
|
inv_mask = (cutoff + norm_of_batch) / (cutoff + eps) |
|
mask = 1.0 / (inv_mask + eps) |
|
x_grad = x_grad * mask |
|
|
|
avg_mask = 1.0 / (inv_mask.mean() + eps) |
|
param_grads = [avg_mask * g for g in param_grads] |
|
|
|
return (x_grad, None, None) + tuple(param_grads) |
|
|
|
|
|
class GradientFilter(torch.nn.Module): |
|
"""This is used to filter out elements that have extremely large gradients |
|
in batch and the module parameters with soft masks. |
|
|
|
Args: |
|
batch_dim (int): |
|
The batch dimension. |
|
threshold (float): |
|
For each element in batch, its gradient will be |
|
filtered out if the gradient norm is larger than |
|
`grad_norm_threshold * median`, where `median` is the median |
|
value of gradient norms of all elememts in batch. |
|
""" |
|
|
|
def __init__(self, batch_dim: int = 1, threshold: float = 10.0): |
|
super(GradientFilter, self).__init__() |
|
self.batch_dim = batch_dim |
|
self.threshold = threshold |
|
|
|
def forward(self, x: Tensor, *params: Tensor) -> Tuple[Tensor, ...]: |
|
if torch.jit.is_scripting() or is_jit_tracing(): |
|
return (x,) + params |
|
else: |
|
return GradientFilterFunction.apply( |
|
x, |
|
self.batch_dim, |
|
self.threshold, |
|
*params, |
|
) |
|
|
|
|
|
class BasicNorm(torch.nn.Module): |
|
""" |
|
This is intended to be a simpler, and hopefully cheaper, replacement for |
|
LayerNorm. The observation this is based on, is that Transformer-type |
|
networks, especially with pre-norm, sometimes seem to set one of the |
|
feature dimensions to a large constant value (e.g. 50), which "defeats" |
|
the LayerNorm because the output magnitude is then not strongly dependent |
|
on the other (useful) features. Presumably the weight and bias of the |
|
LayerNorm are required to allow it to do this. |
|
|
|
So the idea is to introduce this large constant value as an explicit |
|
parameter, that takes the role of the "eps" in LayerNorm, so the network |
|
doesn't have to do this trick. We make the "eps" learnable. |
|
|
|
Args: |
|
num_channels: the number of channels, e.g. 512. |
|
channel_dim: the axis/dimension corresponding to the channel, |
|
interprted as an offset from the input's ndim if negative. |
|
shis is NOT the num_channels; it should typically be one of |
|
{-2, -1, 0, 1, 2, 3}. |
|
eps: the initial "epsilon" that we add as ballast in: |
|
scale = ((input_vec**2).mean() + epsilon)**-0.5 |
|
Note: our epsilon is actually large, but we keep the name |
|
to indicate the connection with conventional LayerNorm. |
|
learn_eps: if true, we learn epsilon; if false, we keep it |
|
at the initial value. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_channels: int, |
|
channel_dim: int = -1, |
|
eps: float = 0.25, |
|
learn_eps: bool = True, |
|
) -> None: |
|
super(BasicNorm, self).__init__() |
|
self.num_channels = num_channels |
|
self.channel_dim = channel_dim |
|
if learn_eps: |
|
self.eps = nn.Parameter(torch.tensor(eps).log().detach()) |
|
else: |
|
self.register_buffer("eps", torch.tensor(eps).log().detach()) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if not is_jit_tracing(): |
|
assert x.shape[self.channel_dim] == self.num_channels |
|
scales = ( |
|
torch.mean(x**2, dim=self.channel_dim, keepdim=True) + self.eps.exp() |
|
) ** -0.5 |
|
return x * scales |
|
|
|
|
|
class ScaledLinear(nn.Linear): |
|
""" |
|
A modified version of nn.Linear where the parameters are scaled before |
|
use, via: |
|
weight = self.weight * self.weight_scale.exp() |
|
bias = self.bias * self.bias_scale.exp() |
|
|
|
Args: |
|
Accepts the standard args and kwargs that nn.Linear accepts |
|
e.g. in_features, out_features, bias=False. |
|
|
|
initial_scale: you can override this if you want to increase |
|
or decrease the initial magnitude of the module's output |
|
(affects the initialization of weight_scale and bias_scale). |
|
Another option, if you want to do something like this, is |
|
to re-initialize the parameters. |
|
initial_speed: this affects how fast the parameter will |
|
learn near the start of training; you can set it to a |
|
value less than one if you suspect that a module |
|
is contributing to instability near the start of training. |
|
Nnote: regardless of the use of this option, it's best to |
|
use schedulers like Noam that have a warm-up period. |
|
Alternatively you can set it to more than 1 if you want it to |
|
initially train faster. Must be greater than 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
initial_scale: float = 1.0, |
|
initial_speed: float = 1.0, |
|
**kwargs, |
|
): |
|
super(ScaledLinear, self).__init__(*args, **kwargs) |
|
initial_scale = torch.tensor(initial_scale).log() |
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach()) |
|
if self.bias is not None: |
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach()) |
|
else: |
|
self.register_parameter("bias_scale", None) |
|
|
|
self._reset_parameters( |
|
initial_speed |
|
) |
|
|
|
def _reset_parameters(self, initial_speed: float): |
|
std = 0.1 / initial_speed |
|
a = (3**0.5) * std |
|
nn.init.uniform_(self.weight, -a, a) |
|
if self.bias is not None: |
|
nn.init.constant_(self.bias, 0.0) |
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel() |
|
scale = fan_in**-0.5 |
|
with torch.no_grad(): |
|
self.weight_scale += torch.tensor(scale / std).log() |
|
|
|
def get_weight(self): |
|
return self.weight * self.weight_scale.exp() |
|
|
|
def get_bias(self): |
|
if self.bias is None or self.bias_scale is None: |
|
return None |
|
else: |
|
return self.bias * self.bias_scale.exp() |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return torch.nn.functional.linear(input, self.get_weight(), self.get_bias()) |
|
|
|
|
|
class ScaledConv1d(nn.Conv1d): |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
initial_scale: float = 1.0, |
|
initial_speed: float = 1.0, |
|
**kwargs, |
|
): |
|
super(ScaledConv1d, self).__init__(*args, **kwargs) |
|
initial_scale = torch.tensor(initial_scale).log() |
|
|
|
self.bias_scale: Optional[nn.Parameter] |
|
|
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach()) |
|
if self.bias is not None: |
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach()) |
|
else: |
|
self.register_parameter("bias_scale", None) |
|
self._reset_parameters( |
|
initial_speed |
|
) |
|
|
|
def _reset_parameters(self, initial_speed: float): |
|
std = 0.1 / initial_speed |
|
a = (3**0.5) * std |
|
nn.init.uniform_(self.weight, -a, a) |
|
if self.bias is not None: |
|
nn.init.constant_(self.bias, 0.0) |
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel() |
|
scale = fan_in**-0.5 |
|
with torch.no_grad(): |
|
self.weight_scale += torch.tensor(scale / std).log() |
|
|
|
def get_weight(self): |
|
return self.weight * self.weight_scale.exp() |
|
|
|
def get_bias(self): |
|
bias = self.bias |
|
bias_scale = self.bias_scale |
|
if bias is None or bias_scale is None: |
|
return None |
|
else: |
|
return bias * bias_scale.exp() |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
F = torch.nn.functional |
|
if self.padding_mode != "zeros": |
|
return F.conv1d( |
|
F.pad( |
|
input, |
|
self._reversed_padding_repeated_twice, |
|
mode=self.padding_mode, |
|
), |
|
self.get_weight(), |
|
self.get_bias(), |
|
self.stride, |
|
(0,), |
|
self.dilation, |
|
self.groups, |
|
) |
|
return F.conv1d( |
|
input, |
|
self.get_weight(), |
|
self.get_bias(), |
|
self.stride, |
|
self.padding, |
|
self.dilation, |
|
self.groups, |
|
) |
|
|
|
|
|
class ScaledConv2d(nn.Conv2d): |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
initial_scale: float = 1.0, |
|
initial_speed: float = 1.0, |
|
**kwargs, |
|
): |
|
super(ScaledConv2d, self).__init__(*args, **kwargs) |
|
initial_scale = torch.tensor(initial_scale).log() |
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach()) |
|
if self.bias is not None: |
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach()) |
|
else: |
|
self.register_parameter("bias_scale", None) |
|
self._reset_parameters( |
|
initial_speed |
|
) |
|
|
|
def _reset_parameters(self, initial_speed: float): |
|
std = 0.1 / initial_speed |
|
a = (3**0.5) * std |
|
nn.init.uniform_(self.weight, -a, a) |
|
if self.bias is not None: |
|
nn.init.constant_(self.bias, 0.0) |
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel() |
|
scale = fan_in**-0.5 |
|
with torch.no_grad(): |
|
self.weight_scale += torch.tensor(scale / std).log() |
|
|
|
def get_weight(self): |
|
return self.weight * self.weight_scale.exp() |
|
|
|
def get_bias(self): |
|
|
|
bias = self.bias |
|
bias_scale = self.bias_scale |
|
if bias is None or bias_scale is None: |
|
return None |
|
else: |
|
return bias * bias_scale.exp() |
|
|
|
def _conv_forward(self, input, weight): |
|
F = torch.nn.functional |
|
if self.padding_mode != "zeros": |
|
return F.conv2d( |
|
F.pad( |
|
input, |
|
self._reversed_padding_repeated_twice, |
|
mode=self.padding_mode, |
|
), |
|
weight, |
|
self.get_bias(), |
|
self.stride, |
|
(0, 0), |
|
self.dilation, |
|
self.groups, |
|
) |
|
return F.conv2d( |
|
input, |
|
weight, |
|
self.get_bias(), |
|
self.stride, |
|
self.padding, |
|
self.dilation, |
|
self.groups, |
|
) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return self._conv_forward(input, self.get_weight()) |
|
|
|
|
|
class ScaledLSTM(nn.LSTM): |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
*args, |
|
initial_scale: float = 1.0, |
|
initial_speed: float = 1.0, |
|
grad_norm_threshold: float = 10.0, |
|
**kwargs, |
|
): |
|
if "bidirectional" in kwargs: |
|
assert kwargs["bidirectional"] is False |
|
super(ScaledLSTM, self).__init__(*args, **kwargs) |
|
initial_scale = torch.tensor(initial_scale).log() |
|
self._scales_names = [] |
|
self._scales = [] |
|
for name in self._flat_weights_names: |
|
scale_name = name + "_scale" |
|
self._scales_names.append(scale_name) |
|
param = nn.Parameter(initial_scale.clone().detach()) |
|
setattr(self, scale_name, param) |
|
self._scales.append(param) |
|
|
|
self.grad_filter = GradientFilter(batch_dim=1, threshold=grad_norm_threshold) |
|
|
|
self._reset_parameters( |
|
initial_speed |
|
) |
|
|
|
def _reset_parameters(self, initial_speed: float): |
|
std = 0.1 / initial_speed |
|
a = (3**0.5) * std |
|
scale = self.hidden_size**-0.5 |
|
v = scale / std |
|
for idx, name in enumerate(self._flat_weights_names): |
|
if "weight" in name: |
|
nn.init.uniform_(self._flat_weights[idx], -a, a) |
|
with torch.no_grad(): |
|
self._scales[idx] += torch.tensor(v).log() |
|
elif "bias" in name: |
|
nn.init.constant_(self._flat_weights[idx], 0.0) |
|
|
|
def _flatten_parameters(self, flat_weights) -> None: |
|
"""Resets parameter data pointer so that they can use faster code paths. |
|
|
|
Right now, this works only if the module is on the GPU and cuDNN is enabled. |
|
Otherwise, it's a no-op. |
|
|
|
This function is modified from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py # noqa |
|
""" |
|
|
|
if len(flat_weights) != len(self._flat_weights_names): |
|
return |
|
|
|
for w in flat_weights: |
|
if not isinstance(w, Tensor): |
|
return |
|
|
|
|
|
|
|
first_fw = flat_weights[0] |
|
dtype = first_fw.dtype |
|
for fw in flat_weights: |
|
if ( |
|
not isinstance(fw.data, Tensor) |
|
or not (fw.data.dtype == dtype) |
|
or not fw.data.is_cuda |
|
or not torch.backends.cudnn.is_acceptable(fw.data) |
|
): |
|
return |
|
|
|
|
|
|
|
|
|
|
|
unique_data_ptrs = set(p.data_ptr() for p in flat_weights) |
|
if len(unique_data_ptrs) != len(flat_weights): |
|
return |
|
|
|
with torch.cuda.device_of(first_fw): |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
if torch._use_cudnn_rnn_flatten_weight(): |
|
num_weights = 4 if self.bias else 2 |
|
if self.proj_size > 0: |
|
num_weights += 1 |
|
torch._cudnn_rnn_flatten_weight( |
|
flat_weights, |
|
num_weights, |
|
self.input_size, |
|
rnn.get_cudnn_mode(self.mode), |
|
self.hidden_size, |
|
self.proj_size, |
|
self.num_layers, |
|
self.batch_first, |
|
bool(self.bidirectional), |
|
) |
|
|
|
def _get_flat_weights(self): |
|
"""Get scaled weights, and resets their data pointer.""" |
|
flat_weights = [] |
|
for idx in range(len(self._flat_weights_names)): |
|
flat_weights.append(self._flat_weights[idx] * self._scales[idx].exp()) |
|
self._flatten_parameters(flat_weights) |
|
return flat_weights |
|
|
|
def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None): |
|
|
|
|
|
|
|
if hx is None: |
|
h_zeros = torch.zeros( |
|
self.num_layers, |
|
input.size(1), |
|
self.proj_size if self.proj_size > 0 else self.hidden_size, |
|
dtype=input.dtype, |
|
device=input.device, |
|
) |
|
c_zeros = torch.zeros( |
|
self.num_layers, |
|
input.size(1), |
|
self.hidden_size, |
|
dtype=input.dtype, |
|
device=input.device, |
|
) |
|
hx = (h_zeros, c_zeros) |
|
|
|
self.check_forward_args(input, hx, None) |
|
|
|
flat_weights = self._get_flat_weights() |
|
input, *flat_weights = self.grad_filter(input, *flat_weights) |
|
|
|
result = _VF.lstm( |
|
input, |
|
hx, |
|
flat_weights, |
|
self.bias, |
|
self.num_layers, |
|
self.dropout, |
|
self.training, |
|
self.bidirectional, |
|
self.batch_first, |
|
) |
|
|
|
output = result[0] |
|
hidden = result[1:] |
|
return output, hidden |
|
|
|
|
|
class ActivationBalancer(torch.nn.Module): |
|
""" |
|
Modifies the backpropped derivatives of a function to try to encourage, for |
|
each channel, that it is positive at least a proportion `threshold` of the |
|
time. It does this by multiplying negative derivative values by up to |
|
(1+max_factor), and positive derivative values by up to (1-max_factor), |
|
interpolated from 1 at the threshold to those extremal values when none |
|
of the inputs are positive. |
|
|
|
|
|
Args: |
|
channel_dim: the dimension/axis corresponding to the channel, e.g. |
|
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. |
|
min_positive: the minimum, per channel, of the proportion of the time |
|
that (x > 0), below which we start to modify the derivatives. |
|
max_positive: the maximum, per channel, of the proportion of the time |
|
that (x > 0), above which we start to modify the derivatives. |
|
max_factor: the maximum factor by which we modify the derivatives for |
|
either the sign constraint or the magnitude constraint; |
|
e.g. with max_factor=0.02, the the derivatives would be multiplied by |
|
values in the range [0.98..1.02]. |
|
min_abs: the minimum average-absolute-value per channel, which |
|
we allow, before we start to modify the derivatives to prevent |
|
this. |
|
max_abs: the maximum average-absolute-value per channel, which |
|
we allow, before we start to modify the derivatives to prevent |
|
this. |
|
balance_prob: the probability to apply the ActivationBalancer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channel_dim: int, |
|
min_positive: float = 0.05, |
|
max_positive: float = 0.95, |
|
max_factor: float = 0.01, |
|
min_abs: float = 0.2, |
|
max_abs: float = 100.0, |
|
balance_prob: float = 0.25, |
|
): |
|
super(ActivationBalancer, self).__init__() |
|
self.channel_dim = channel_dim |
|
self.min_positive = min_positive |
|
self.max_positive = max_positive |
|
self.max_factor = max_factor |
|
self.min_abs = min_abs |
|
self.max_abs = max_abs |
|
assert 0 < balance_prob <= 1, balance_prob |
|
self.balance_prob = balance_prob |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if random.random() >= self.balance_prob: |
|
return x |
|
|
|
return ActivationBalancerFunction.apply( |
|
x, |
|
self.channel_dim, |
|
self.min_positive, |
|
self.max_positive, |
|
self.max_factor / self.balance_prob, |
|
self.min_abs, |
|
self.max_abs, |
|
) |
|
|
|
|
|
class DoubleSwishFunction(torch.autograd.Function): |
|
""" |
|
double_swish(x) = x * torch.sigmoid(x-1) |
|
This is a definition, originally motivated by its close numerical |
|
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x). |
|
|
|
Memory-efficient derivative computation: |
|
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) |
|
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). |
|
Now, s'(x) = s(x) * (1-s(x)). |
|
double_swish'(x) = x * s'(x) + s(x). |
|
= x * s(x) * (1-s(x)) + s(x). |
|
= double_swish(x) * (1-s(x)) + s(x) |
|
... so we just need to remember s(x) but not x itself. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, x: Tensor) -> Tensor: |
|
x = x.detach() |
|
s = torch.sigmoid(x - 1.0) |
|
y = x * s |
|
ctx.save_for_backward(s, y) |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, y_grad: Tensor) -> Tensor: |
|
s, y = ctx.saved_tensors |
|
return (y * (1 - s) + s) * y_grad |
|
|
|
|
|
class DoubleSwish(torch.nn.Module): |
|
def forward(self, x: Tensor) -> Tensor: |
|
"""Return double-swish activation function which is an approximation to Swish(Swish(x)), |
|
that we approximate closely with x * sigmoid(x-1). |
|
""" |
|
if torch.jit.is_scripting() or is_jit_tracing(): |
|
return x * torch.sigmoid(x - 1.0) |
|
else: |
|
return DoubleSwishFunction.apply(x) |
|
|
|
|
|
class ScaledEmbedding(nn.Module): |
|
r"""This is a modified version of nn.Embedding that introduces a learnable scale |
|
on the parameters. Note: due to how we initialize it, it's best used with |
|
schedulers like Noam that have a warmup period. |
|
|
|
It is a simple lookup table that stores embeddings of a fixed dictionary and size. |
|
|
|
This module is often used to store word embeddings and retrieve them using indices. |
|
The input to the module is a list of indices, and the output is the corresponding |
|
word embeddings. |
|
|
|
Args: |
|
num_embeddings (int): size of the dictionary of embeddings |
|
embedding_dim (int): the size of each embedding vector |
|
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx` |
|
(initialized to zeros) whenever it encounters the index. |
|
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of |
|
the words in the mini-batch. Default ``False``. |
|
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. |
|
See Notes for more details regarding sparse gradients. |
|
|
|
initial_speed (float, optional): This affects how fast the parameter will |
|
learn near the start of training; you can set it to a value less than |
|
one if you suspect that a module is contributing to instability near |
|
the start of training. Note: regardless of the use of this option, |
|
it's best to use schedulers like Noam that have a warm-up period. |
|
Alternatively you can set it to more than 1 if you want it to |
|
initially train faster. Must be greater than 0. |
|
|
|
|
|
Attributes: |
|
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) |
|
initialized from :math:`\mathcal{N}(0, 1)` |
|
|
|
Shape: |
|
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract |
|
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` |
|
|
|
.. note:: |
|
Keep in mind that only a limited number of optimizers support |
|
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), |
|
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) |
|
|
|
.. note:: |
|
With :attr:`padding_idx` set, the embedding vector at |
|
:attr:`padding_idx` is initialized to all zeros. However, note that this |
|
vector can be modified afterwards, e.g., using a customized |
|
initialization method, and thus changing the vector used to pad the |
|
output. The gradient for this vector from :class:`~torch.nn.Embedding` |
|
is always zero. |
|
|
|
Examples:: |
|
|
|
>>> # an Embedding module containing 10 tensors of size 3 |
|
>>> embedding = nn.Embedding(10, 3) |
|
>>> # a batch of 2 samples of 4 indices each |
|
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]]) |
|
>>> embedding(input) |
|
tensor([[[-0.0251, -1.6902, 0.7172], |
|
[-0.6431, 0.0748, 0.6969], |
|
[ 1.4970, 1.3448, -0.9685], |
|
[-0.3677, -2.7265, -0.1685]], |
|
|
|
[[ 1.4970, 1.3448, -0.9685], |
|
[ 0.4362, -0.4004, 0.9400], |
|
[-0.6431, 0.0748, 0.6969], |
|
[ 0.9124, -2.3616, 1.1151]]]) |
|
|
|
|
|
>>> # example with padding_idx |
|
>>> embedding = nn.Embedding(10, 3, padding_idx=0) |
|
>>> input = torch.LongTensor([[0,2,0,5]]) |
|
>>> embedding(input) |
|
tensor([[[ 0.0000, 0.0000, 0.0000], |
|
[ 0.1535, -2.0309, 0.9315], |
|
[ 0.0000, 0.0000, 0.0000], |
|
[-0.1655, 0.9897, 0.0635]]]) |
|
|
|
""" |
|
__constants__ = [ |
|
"num_embeddings", |
|
"embedding_dim", |
|
"padding_idx", |
|
"scale_grad_by_freq", |
|
"sparse", |
|
] |
|
|
|
num_embeddings: int |
|
embedding_dim: int |
|
padding_idx: int |
|
scale_grad_by_freq: bool |
|
weight: Tensor |
|
sparse: bool |
|
|
|
def __init__( |
|
self, |
|
num_embeddings: int, |
|
embedding_dim: int, |
|
padding_idx: Optional[int] = None, |
|
scale_grad_by_freq: bool = False, |
|
sparse: bool = False, |
|
initial_speed: float = 1.0, |
|
) -> None: |
|
super(ScaledEmbedding, self).__init__() |
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
if padding_idx is not None: |
|
if padding_idx > 0: |
|
assert ( |
|
padding_idx < self.num_embeddings |
|
), "Padding_idx must be within num_embeddings" |
|
elif padding_idx < 0: |
|
assert ( |
|
padding_idx >= -self.num_embeddings |
|
), "Padding_idx must be within num_embeddings" |
|
padding_idx = self.num_embeddings + padding_idx |
|
self.padding_idx = padding_idx |
|
self.scale_grad_by_freq = scale_grad_by_freq |
|
|
|
self.scale = nn.Parameter(torch.zeros(())) |
|
self.sparse = sparse |
|
|
|
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) |
|
self.reset_parameters(initial_speed) |
|
|
|
def reset_parameters(self, initial_speed: float = 1.0) -> None: |
|
std = 0.1 / initial_speed |
|
nn.init.normal_(self.weight, std=std) |
|
nn.init.constant_(self.scale, torch.tensor(1.0 / std).log()) |
|
|
|
if self.padding_idx is not None: |
|
with torch.no_grad(): |
|
self.weight[self.padding_idx].fill_(0) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
F = torch.nn.functional |
|
scale = self.scale.exp() |
|
if input.numel() < self.num_embeddings: |
|
return ( |
|
F.embedding( |
|
input, |
|
self.weight, |
|
self.padding_idx, |
|
None, |
|
2.0, |
|
self.scale_grad_by_freq, |
|
self.sparse, |
|
) |
|
* scale |
|
) |
|
else: |
|
return F.embedding( |
|
input, |
|
self.weight * scale, |
|
self.padding_idx, |
|
None, |
|
2.0, |
|
self.scale_grad_by_freq, |
|
self.sparse, |
|
) |
|
|
|
def extra_repr(self) -> str: |
|
|
|
s = "{num_embeddings}, {embedding_dim}" |
|
if self.padding_idx is not None: |
|
s += ", padding_idx={padding_idx}" |
|
if self.scale_grad_by_freq is not False: |
|
s += ", scale_grad_by_freq={scale_grad_by_freq}" |
|
if self.sparse is not False: |
|
s += ", sparse=True" |
|
return s.format(**self.__dict__) |
|
|
|
|
|
def _test_activation_balancer_sign(): |
|
probs = torch.arange(0, 1, 0.01) |
|
N = 1000 |
|
x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1)) |
|
x = x.detach() |
|
x.requires_grad = True |
|
m = ActivationBalancer( |
|
channel_dim=0, |
|
min_positive=0.05, |
|
max_positive=0.95, |
|
max_factor=0.2, |
|
min_abs=0.0, |
|
) |
|
|
|
y_grad = torch.sign(torch.randn(probs.numel(), N)) |
|
|
|
y = m(x) |
|
y.backward(gradient=y_grad) |
|
print("_test_activation_balancer_sign: x = ", x) |
|
print("_test_activation_balancer_sign: y grad = ", y_grad) |
|
print("_test_activation_balancer_sign: x grad = ", x.grad) |
|
|
|
|
|
def _test_activation_balancer_magnitude(): |
|
magnitudes = torch.arange(0, 1, 0.01) |
|
N = 1000 |
|
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) |
|
x = x.detach() |
|
x.requires_grad = True |
|
m = ActivationBalancer( |
|
channel_dim=0, |
|
min_positive=0.0, |
|
max_positive=1.0, |
|
max_factor=0.2, |
|
min_abs=0.2, |
|
max_abs=0.8, |
|
) |
|
|
|
y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) |
|
|
|
y = m(x) |
|
y.backward(gradient=y_grad) |
|
print("_test_activation_balancer_magnitude: x = ", x) |
|
print("_test_activation_balancer_magnitude: y grad = ", y_grad) |
|
print("_test_activation_balancer_magnitude: x grad = ", x.grad) |
|
|
|
|
|
def _test_basic_norm(): |
|
num_channels = 128 |
|
m = BasicNorm(num_channels=num_channels, channel_dim=1) |
|
|
|
x = torch.randn(500, num_channels) |
|
|
|
y = m(x) |
|
|
|
assert y.shape == x.shape |
|
x_rms = (x**2).mean().sqrt() |
|
y_rms = (y**2).mean().sqrt() |
|
print("x rms = ", x_rms) |
|
print("y rms = ", y_rms) |
|
assert y_rms < x_rms |
|
assert y_rms > 0.5 * x_rms |
|
|
|
|
|
def _test_double_swish_deriv(): |
|
x = torch.randn(10, 12, dtype=torch.double) * 0.5 |
|
x.requires_grad = True |
|
m = DoubleSwish() |
|
torch.autograd.gradcheck(m, x) |
|
|
|
|
|
def _test_scaled_lstm(): |
|
N, L = 2, 30 |
|
dim_in, dim_hidden = 10, 20 |
|
m = ScaledLSTM(input_size=dim_in, hidden_size=dim_hidden, bias=True) |
|
x = torch.randn(L, N, dim_in) |
|
h0 = torch.randn(1, N, dim_hidden) |
|
c0 = torch.randn(1, N, dim_hidden) |
|
y, (h, c) = m(x, (h0, c0)) |
|
assert y.shape == (L, N, dim_hidden) |
|
assert h.shape == (1, N, dim_hidden) |
|
assert c.shape == (1, N, dim_hidden) |
|
|
|
|
|
def _test_grad_filter(): |
|
threshold = 50.0 |
|
time, batch, channel = 200, 5, 128 |
|
grad_filter = GradientFilter(batch_dim=1, threshold=threshold) |
|
|
|
for i in range(2): |
|
x = torch.randn(time, batch, channel, requires_grad=True) |
|
w = nn.Parameter(torch.ones(5)) |
|
b = nn.Parameter(torch.zeros(5)) |
|
|
|
x_out, w_out, b_out = grad_filter(x, w, b) |
|
|
|
w_out_grad = torch.randn_like(w) |
|
b_out_grad = torch.randn_like(b) |
|
x_out_grad = torch.rand_like(x) |
|
if i % 2 == 1: |
|
|
|
|
|
|
|
x_out_grad[:, 0, :] = torch.full((time, channel), threshold) |
|
|
|
torch.autograd.backward( |
|
[x_out, w_out, b_out], [x_out_grad, w_out_grad, b_out_grad] |
|
) |
|
|
|
print( |
|
"_test_grad_filter: for gradient norms, the first element > median * threshold ", |
|
i % 2 == 1, |
|
) |
|
|
|
print( |
|
"_test_grad_filter: x_out_grad norm = ", |
|
(x_out_grad**2).mean(dim=(0, 2)).sqrt(), |
|
) |
|
print( |
|
"_test_grad_filter: x.grad norm = ", |
|
(x.grad**2).mean(dim=(0, 2)).sqrt(), |
|
) |
|
print("_test_grad_filter: w_out_grad = ", w_out_grad) |
|
print("_test_grad_filter: w.grad = ", w.grad) |
|
print("_test_grad_filter: b_out_grad = ", b_out_grad) |
|
print("_test_grad_filter: b.grad = ", b.grad) |
|
|
|
|
|
if __name__ == "__main__": |
|
_test_activation_balancer_sign() |
|
_test_activation_balancer_magnitude() |
|
_test_basic_norm() |
|
_test_double_swish_deriv() |
|
_test_scaled_lstm() |
|
_test_grad_filter() |
|
|