|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Usage: |
|
|
|
(1) Export to torchscript model using torch.jit.trace() |
|
|
|
./conformer_ctc3/export.py \ |
|
--exp-dir ./conformer_ctc3/exp \ |
|
--lang-dir data/lang_bpe_500 \ |
|
--epoch 20 \ |
|
--avg 10 \ |
|
--jit-trace 1 |
|
|
|
It will generates the file: `jit_trace.pt`. |
|
|
|
(2) Export `model.state_dict()` |
|
|
|
./conformer_ctc3/export.py \ |
|
--exp-dir ./conformer_ctc3/exp \ |
|
--lang-dir data/lang_bpe_500 \ |
|
--epoch 20 \ |
|
--avg 10 |
|
|
|
It will generate a file `pretrained.pt` in the given `exp_dir`. You can later |
|
load it by `icefall.checkpoint.load_checkpoint()`. |
|
|
|
To use the generated file with `conformer_ctc3/decode.py`, |
|
you can do: |
|
|
|
cd /path/to/exp_dir |
|
ln -s pretrained.pt epoch-9999.pt |
|
|
|
cd /path/to/egs/librispeech/ASR |
|
./conformer_ctc3/decode.py \ |
|
--exp-dir ./conformer_ctc3/exp \ |
|
--epoch 9999 \ |
|
--avg 1 \ |
|
--max-duration 100 \ |
|
--lang-dir data/lang_bpe_500 |
|
""" |
|
|
|
import argparse |
|
import logging |
|
from pathlib import Path |
|
|
|
import torch |
|
from scaling_converter import convert_scaled_to_non_scaled |
|
from train import add_model_arguments, get_ctc_model, get_params |
|
|
|
from icefall.checkpoint import ( |
|
average_checkpoints, |
|
average_checkpoints_with_averaged_model, |
|
find_checkpoints, |
|
load_checkpoint, |
|
) |
|
from icefall.lexicon import Lexicon |
|
from icefall.utils import str2bool |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
) |
|
|
|
parser.add_argument( |
|
"--epoch", |
|
type=int, |
|
default=28, |
|
help="""It specifies the checkpoint to use for averaging. |
|
Note: Epoch counts from 0. |
|
You can specify --avg to use more checkpoints for model averaging.""", |
|
) |
|
|
|
parser.add_argument( |
|
"--iter", |
|
type=int, |
|
default=0, |
|
help="""If positive, --epoch is ignored and it |
|
will use the checkpoint exp_dir/checkpoint-iter.pt. |
|
You can specify --avg to use more checkpoints for model averaging. |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"--avg", |
|
type=int, |
|
default=15, |
|
help="Number of checkpoints to average. Automatically select " |
|
"consecutive checkpoints before the checkpoint specified by " |
|
"'--epoch' and '--iter'", |
|
) |
|
|
|
parser.add_argument( |
|
"--use-averaged-model", |
|
type=str2bool, |
|
default=True, |
|
help="Whether to load averaged model. Currently it only supports " |
|
"using --epoch. If True, it would decode with the averaged model " |
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`." |
|
"Actually only the models with epoch number of `epoch-avg` and " |
|
"`epoch` are loaded for averaging. ", |
|
) |
|
|
|
parser.add_argument( |
|
"--exp-dir", |
|
type=str, |
|
default="pruned_transducer_stateless4/exp", |
|
help="""It specifies the directory where all training related |
|
files, e.g., checkpoints, log, etc, are saved |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"--lang-dir", |
|
type=Path, |
|
default="data/lang_bpe_500", |
|
help="The lang dir containing word table and LG graph", |
|
) |
|
|
|
parser.add_argument( |
|
"--jit-trace", |
|
type=str2bool, |
|
default=False, |
|
help="""True to save a model after applying torch.jit.script. |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"--streaming-model", |
|
type=str2bool, |
|
default=False, |
|
help="""Whether to export a streaming model, if the models in exp-dir |
|
are streaming model, this should be True. |
|
""", |
|
) |
|
|
|
add_model_arguments(parser) |
|
|
|
return parser |
|
|
|
|
|
def main(): |
|
args = get_parser().parse_args() |
|
args.exp_dir = Path(args.exp_dir) |
|
|
|
params = get_params() |
|
params.update(vars(args)) |
|
|
|
device = torch.device("cpu") |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda", 0) |
|
|
|
logging.info(f"device: {device}") |
|
|
|
lexicon = Lexicon(params.lang_dir) |
|
max_token_id = max(lexicon.tokens) |
|
num_classes = max_token_id + 1 |
|
params.vocab_size = num_classes |
|
|
|
if params.streaming_model: |
|
assert params.causal_convolution |
|
|
|
logging.info(params) |
|
|
|
logging.info("About to create model") |
|
model = get_ctc_model(params) |
|
|
|
model.to(device) |
|
|
|
if not params.use_averaged_model: |
|
if params.iter > 0: |
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ |
|
: params.avg |
|
] |
|
if len(filenames) == 0: |
|
raise ValueError( |
|
f"No checkpoints found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
elif len(filenames) < params.avg: |
|
raise ValueError( |
|
f"Not enough checkpoints ({len(filenames)}) found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
logging.info(f"averaging {filenames}") |
|
model.load_state_dict(average_checkpoints(filenames, device=device)) |
|
elif params.avg == 1: |
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) |
|
else: |
|
start = params.epoch - params.avg + 1 |
|
filenames = [] |
|
for i in range(start, params.epoch + 1): |
|
if i >= 1: |
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt") |
|
logging.info(f"averaging {filenames}") |
|
model.load_state_dict(average_checkpoints(filenames, device=device)) |
|
else: |
|
if params.iter > 0: |
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ |
|
: params.avg + 1 |
|
] |
|
if len(filenames) == 0: |
|
raise ValueError( |
|
f"No checkpoints found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
elif len(filenames) < params.avg + 1: |
|
raise ValueError( |
|
f"Not enough checkpoints ({len(filenames)}) found for" |
|
f" --iter {params.iter}, --avg {params.avg}" |
|
) |
|
filename_start = filenames[-1] |
|
filename_end = filenames[0] |
|
logging.info( |
|
"Calculating the averaged model over iteration checkpoints" |
|
f" from {filename_start} (excluded) to {filename_end}" |
|
) |
|
model.load_state_dict( |
|
average_checkpoints_with_averaged_model( |
|
filename_start=filename_start, |
|
filename_end=filename_end, |
|
device=device, |
|
) |
|
) |
|
else: |
|
assert params.avg > 0, params.avg |
|
start = params.epoch - params.avg |
|
assert start >= 1, start |
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt" |
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" |
|
logging.info( |
|
f"Calculating the averaged model over epoch range from " |
|
f"{start} (excluded) to {params.epoch}" |
|
) |
|
model.load_state_dict( |
|
average_checkpoints_with_averaged_model( |
|
filename_start=filename_start, |
|
filename_end=filename_end, |
|
device=device, |
|
) |
|
) |
|
|
|
model.to("cpu") |
|
model.eval() |
|
|
|
if params.jit_trace: |
|
|
|
assert not params.streaming_model |
|
convert_scaled_to_non_scaled(model, inplace=True) |
|
|
|
logging.info("Using torch.jit.trace()") |
|
|
|
x = torch.zeros(1, 100, 80, dtype=torch.float32) |
|
x_lens = torch.tensor([100], dtype=torch.int64) |
|
traced_model = torch.jit.trace(model, (x, x_lens)) |
|
|
|
filename = params.exp_dir / "jit_trace.pt" |
|
traced_model.save(str(filename)) |
|
logging.info(f"Saved to {filename}") |
|
else: |
|
logging.info("Not using torch.jit.trace()") |
|
|
|
|
|
filename = params.exp_dir / "pretrained.pt" |
|
torch.save({"model": model.state_dict()}, str(filename)) |
|
logging.info(f"Saved to {filename}") |
|
|
|
|
|
if __name__ == "__main__": |
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" |
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO) |
|
main() |
|
|