# Copyright 2021-2022 Xiaomi Corp. (authors: Fangjun Kuang, # Wei Kang, # Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Tuple import torch import torch.nn as nn from encoder_interface import EncoderInterface from scaling import ScaledLinear class CTCModel(nn.Module): """It implements https://www.cs.toronto.edu/~graves/icml_2006.pdf "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks" """ def __init__( self, encoder: EncoderInterface, encoder_dim: int, vocab_size: int, ): """ Args: encoder: It is the transcription network in the paper. Its accepts two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,). It returns two tensors: `logits` of shape (N, T, encoder_dm) and `logit_lens` of shape (N,). encoder_dim: The feature embedding dimension. vocab_size: The vocabulary size. """ super().__init__() assert isinstance(encoder, EncoderInterface), type(encoder) self.encoder = encoder self.ctc_output_module = nn.Sequential( nn.Dropout(p=0.1), ScaledLinear(encoder_dim, vocab_size), ) def get_ctc_output( self, encoder_out: torch.Tensor, delay_penalty: float = 0.0, blank_threshold: float = 0.99, ): """Compute ctc log-prob and optionally (delay_penalty > 0) apply delay penalty. We first split utterance into sub-utterances according to the blank probs, and then add sawtooth-like "blank-bonus" values to the blank probs. See https://github.com/k2-fsa/icefall/pull/669 for details. Args: encoder_out: A tensor with shape of (N, T, C). delay_penalty: A constant used to scale the delay penalty score. blank_threshold: The threshold used to split utterance into sub-utterances. """ output = self.ctc_output_module(encoder_out) log_prob = nn.functional.log_softmax(output, dim=-1) if self.training and delay_penalty > 0: T_arange = torch.arange(encoder_out.shape[1]).to(device=encoder_out.device) # split into sub-utterances using the blank-id mask = log_prob[:, :, 0] >= math.log(blank_threshold) # (B, T) mask[:, 0] = True cummax_out = (T_arange * mask).cummax(dim=-1)[0] # (B, T) # the sawtooth "blank-bonus" value penalty = T_arange - cummax_out # (B, T) penalty_all = torch.zeros_like(log_prob) penalty_all[:, :, 0] = delay_penalty * penalty # apply latency penalty on probs log_prob = log_prob + penalty_all return log_prob def forward( self, x: torch.Tensor, x_lens: torch.Tensor, warmup: float = 1.0, delay_penalty: float = 0.0, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: x: A 3-D tensor of shape (N, T, C). x_lens: A 1-D tensor of shape (N,). It contains the number of frames in `x` before padding. warmup: a floating point value which increases throughout training; values >= 1.0 are fully warmed up and have all modules present. delay_penalty: A constant used to scale the delay penalty score. """ encoder_out, encoder_out_lens = self.encoder(x, x_lens, warmup=warmup) assert torch.all(encoder_out_lens > 0) nnet_output = self.get_ctc_output(encoder_out, delay_penalty=delay_penalty) return nnet_output, encoder_out_lens