# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey, Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import random from itertools import repeat from typing import Optional, Tuple import torch import torch.backends.cudnn.rnn as rnn import torch.nn as nn from torch import _VF, Tensor from icefall.utils import is_jit_tracing def _ntuple(n): def parse(x): if isinstance(x, collections.Iterable): return x return tuple(repeat(x, n)) return parse _single = _ntuple(1) _pair = _ntuple(2) class ActivationBalancerFunction(torch.autograd.Function): @staticmethod def forward( ctx, x: Tensor, channel_dim: int, min_positive: float, # e.g. 0.05 max_positive: float, # e.g. 0.95 max_factor: float, # e.g. 0.01 min_abs: float, # e.g. 0.2 max_abs: float, # e.g. 100.0 ) -> Tensor: if x.requires_grad: if channel_dim < 0: channel_dim += x.ndim # sum_dims = [d for d in range(x.ndim) if d != channel_dim] # The above line is not torch scriptable for torch 1.6.0 # torch.jit.frontend.NotSupportedError: comprehension ifs not supported yet: # noqa sum_dims = [] for d in range(x.ndim): if d != channel_dim: sum_dims.append(d) xgt0 = x > 0 proportion_positive = torch.mean( xgt0.to(x.dtype), dim=sum_dims, keepdim=True ) factor1 = ( (min_positive - proportion_positive).relu() * (max_factor / min_positive) if min_positive != 0.0 else 0.0 ) factor2 = ( (proportion_positive - max_positive).relu() * (max_factor / (max_positive - 1.0)) if max_positive != 1.0 else 0.0 ) factor = factor1 + factor2 if isinstance(factor, float): factor = torch.zeros_like(proportion_positive) mean_abs = torch.mean(x.abs(), dim=sum_dims, keepdim=True) below_threshold = mean_abs < min_abs above_threshold = mean_abs > max_abs ctx.save_for_backward(factor, xgt0, below_threshold, above_threshold) ctx.max_factor = max_factor ctx.sum_dims = sum_dims return x @staticmethod def backward( ctx, x_grad: Tensor ) -> Tuple[Tensor, None, None, None, None, None, None]: factor, xgt0, below_threshold, above_threshold = ctx.saved_tensors dtype = x_grad.dtype scale_factor = ( (below_threshold.to(dtype) - above_threshold.to(dtype)) * (xgt0.to(dtype) - 0.5) * (ctx.max_factor * 2.0) ) neg_delta_grad = x_grad.abs() * (factor + scale_factor) return x_grad - neg_delta_grad, None, None, None, None, None, None class GradientFilterFunction(torch.autograd.Function): @staticmethod def forward( ctx, x: Tensor, batch_dim: int, # e.g., 1 threshold: float, # e.g., 10.0 *params: Tensor, # module parameters ) -> Tuple[Tensor, ...]: if x.requires_grad: if batch_dim < 0: batch_dim += x.ndim ctx.batch_dim = batch_dim ctx.threshold = threshold return (x,) + params @staticmethod def backward( ctx, x_grad: Tensor, *param_grads: Tensor, ) -> Tuple[Tensor, ...]: eps = 1.0e-20 dim = ctx.batch_dim norm_dims = [d for d in range(x_grad.ndim) if d != dim] norm_of_batch = (x_grad**2).mean(dim=norm_dims, keepdim=True).sqrt() median_norm = norm_of_batch.median() cutoff = median_norm * ctx.threshold inv_mask = (cutoff + norm_of_batch) / (cutoff + eps) mask = 1.0 / (inv_mask + eps) x_grad = x_grad * mask avg_mask = 1.0 / (inv_mask.mean() + eps) param_grads = [avg_mask * g for g in param_grads] return (x_grad, None, None) + tuple(param_grads) class GradientFilter(torch.nn.Module): """This is used to filter out elements that have extremely large gradients in batch and the module parameters with soft masks. Args: batch_dim (int): The batch dimension. threshold (float): For each element in batch, its gradient will be filtered out if the gradient norm is larger than `grad_norm_threshold * median`, where `median` is the median value of gradient norms of all elememts in batch. """ def __init__(self, batch_dim: int = 1, threshold: float = 10.0): super(GradientFilter, self).__init__() self.batch_dim = batch_dim self.threshold = threshold def forward(self, x: Tensor, *params: Tensor) -> Tuple[Tensor, ...]: if torch.jit.is_scripting() or is_jit_tracing(): return (x,) + params else: return GradientFilterFunction.apply( x, self.batch_dim, self.threshold, *params, ) class BasicNorm(torch.nn.Module): """ This is intended to be a simpler, and hopefully cheaper, replacement for LayerNorm. The observation this is based on, is that Transformer-type networks, especially with pre-norm, sometimes seem to set one of the feature dimensions to a large constant value (e.g. 50), which "defeats" the LayerNorm because the output magnitude is then not strongly dependent on the other (useful) features. Presumably the weight and bias of the LayerNorm are required to allow it to do this. So the idea is to introduce this large constant value as an explicit parameter, that takes the role of the "eps" in LayerNorm, so the network doesn't have to do this trick. We make the "eps" learnable. Args: num_channels: the number of channels, e.g. 512. channel_dim: the axis/dimension corresponding to the channel, interprted as an offset from the input's ndim if negative. shis is NOT the num_channels; it should typically be one of {-2, -1, 0, 1, 2, 3}. eps: the initial "epsilon" that we add as ballast in: scale = ((input_vec**2).mean() + epsilon)**-0.5 Note: our epsilon is actually large, but we keep the name to indicate the connection with conventional LayerNorm. learn_eps: if true, we learn epsilon; if false, we keep it at the initial value. """ def __init__( self, num_channels: int, channel_dim: int = -1, # CAUTION: see documentation. eps: float = 0.25, learn_eps: bool = True, ) -> None: super(BasicNorm, self).__init__() self.num_channels = num_channels self.channel_dim = channel_dim if learn_eps: self.eps = nn.Parameter(torch.tensor(eps).log().detach()) else: self.register_buffer("eps", torch.tensor(eps).log().detach()) def forward(self, x: Tensor) -> Tensor: if not is_jit_tracing(): assert x.shape[self.channel_dim] == self.num_channels scales = ( torch.mean(x**2, dim=self.channel_dim, keepdim=True) + self.eps.exp() ) ** -0.5 return x * scales class ScaledLinear(nn.Linear): """ A modified version of nn.Linear where the parameters are scaled before use, via: weight = self.weight * self.weight_scale.exp() bias = self.bias * self.bias_scale.exp() Args: Accepts the standard args and kwargs that nn.Linear accepts e.g. in_features, out_features, bias=False. initial_scale: you can override this if you want to increase or decrease the initial magnitude of the module's output (affects the initialization of weight_scale and bias_scale). Another option, if you want to do something like this, is to re-initialize the parameters. initial_speed: this affects how fast the parameter will learn near the start of training; you can set it to a value less than one if you suspect that a module is contributing to instability near the start of training. Nnote: regardless of the use of this option, it's best to use schedulers like Noam that have a warm-up period. Alternatively you can set it to more than 1 if you want it to initially train faster. Must be greater than 0. """ def __init__( self, *args, initial_scale: float = 1.0, initial_speed: float = 1.0, **kwargs, ): super(ScaledLinear, self).__init__(*args, **kwargs) initial_scale = torch.tensor(initial_scale).log() self.weight_scale = nn.Parameter(initial_scale.clone().detach()) if self.bias is not None: self.bias_scale = nn.Parameter(initial_scale.clone().detach()) else: self.register_parameter("bias_scale", None) self._reset_parameters( initial_speed ) # Overrides the reset_parameters in nn.Linear def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed a = (3**0.5) * std nn.init.uniform_(self.weight, -a, a) if self.bias is not None: nn.init.constant_(self.bias, 0.0) fan_in = self.weight.shape[1] * self.weight[0][0].numel() scale = fan_in**-0.5 # 1/sqrt(fan_in) with torch.no_grad(): self.weight_scale += torch.tensor(scale / std).log() def get_weight(self): return self.weight * self.weight_scale.exp() def get_bias(self): if self.bias is None or self.bias_scale is None: return None else: return self.bias * self.bias_scale.exp() def forward(self, input: Tensor) -> Tensor: return torch.nn.functional.linear(input, self.get_weight(), self.get_bias()) class ScaledConv1d(nn.Conv1d): # See docs for ScaledLinear def __init__( self, *args, initial_scale: float = 1.0, initial_speed: float = 1.0, **kwargs, ): super(ScaledConv1d, self).__init__(*args, **kwargs) initial_scale = torch.tensor(initial_scale).log() self.bias_scale: Optional[nn.Parameter] # for torchscript self.weight_scale = nn.Parameter(initial_scale.clone().detach()) if self.bias is not None: self.bias_scale = nn.Parameter(initial_scale.clone().detach()) else: self.register_parameter("bias_scale", None) self._reset_parameters( initial_speed ) # Overrides the reset_parameters in base class def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed a = (3**0.5) * std nn.init.uniform_(self.weight, -a, a) if self.bias is not None: nn.init.constant_(self.bias, 0.0) fan_in = self.weight.shape[1] * self.weight[0][0].numel() scale = fan_in**-0.5 # 1/sqrt(fan_in) with torch.no_grad(): self.weight_scale += torch.tensor(scale / std).log() def get_weight(self): return self.weight * self.weight_scale.exp() def get_bias(self): bias = self.bias bias_scale = self.bias_scale if bias is None or bias_scale is None: return None else: return bias * bias_scale.exp() def forward(self, input: Tensor) -> Tensor: F = torch.nn.functional if self.padding_mode != "zeros": return F.conv1d( F.pad( input, self._reversed_padding_repeated_twice, mode=self.padding_mode, ), self.get_weight(), self.get_bias(), self.stride, (0,), self.dilation, self.groups, ) return F.conv1d( input, self.get_weight(), self.get_bias(), self.stride, self.padding, self.dilation, self.groups, ) class ScaledConv2d(nn.Conv2d): # See docs for ScaledLinear def __init__( self, *args, initial_scale: float = 1.0, initial_speed: float = 1.0, **kwargs, ): super(ScaledConv2d, self).__init__(*args, **kwargs) initial_scale = torch.tensor(initial_scale).log() self.weight_scale = nn.Parameter(initial_scale.clone().detach()) if self.bias is not None: self.bias_scale = nn.Parameter(initial_scale.clone().detach()) else: self.register_parameter("bias_scale", None) self._reset_parameters( initial_speed ) # Overrides the reset_parameters in base class def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed a = (3**0.5) * std nn.init.uniform_(self.weight, -a, a) if self.bias is not None: nn.init.constant_(self.bias, 0.0) fan_in = self.weight.shape[1] * self.weight[0][0].numel() scale = fan_in**-0.5 # 1/sqrt(fan_in) with torch.no_grad(): self.weight_scale += torch.tensor(scale / std).log() def get_weight(self): return self.weight * self.weight_scale.exp() def get_bias(self): # see https://github.com/pytorch/pytorch/issues/24135 bias = self.bias bias_scale = self.bias_scale if bias is None or bias_scale is None: return None else: return bias * bias_scale.exp() def _conv_forward(self, input, weight): F = torch.nn.functional if self.padding_mode != "zeros": return F.conv2d( F.pad( input, self._reversed_padding_repeated_twice, mode=self.padding_mode, ), weight, self.get_bias(), self.stride, (0, 0), self.dilation, self.groups, ) return F.conv2d( input, weight, self.get_bias(), self.stride, self.padding, self.dilation, self.groups, ) def forward(self, input: Tensor) -> Tensor: return self._conv_forward(input, self.get_weight()) class ScaledLSTM(nn.LSTM): # See docs for ScaledLinear. # This class implements LSTM with scaling mechanism, using `torch._VF.lstm` # Please refer to https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py def __init__( self, *args, initial_scale: float = 1.0, initial_speed: float = 1.0, grad_norm_threshold: float = 10.0, **kwargs, ): if "bidirectional" in kwargs: assert kwargs["bidirectional"] is False super(ScaledLSTM, self).__init__(*args, **kwargs) initial_scale = torch.tensor(initial_scale).log() self._scales_names = [] self._scales = [] for name in self._flat_weights_names: scale_name = name + "_scale" self._scales_names.append(scale_name) param = nn.Parameter(initial_scale.clone().detach()) setattr(self, scale_name, param) self._scales.append(param) self.grad_filter = GradientFilter(batch_dim=1, threshold=grad_norm_threshold) self._reset_parameters( initial_speed ) # Overrides the reset_parameters in base class def _reset_parameters(self, initial_speed: float): std = 0.1 / initial_speed a = (3**0.5) * std scale = self.hidden_size**-0.5 v = scale / std for idx, name in enumerate(self._flat_weights_names): if "weight" in name: nn.init.uniform_(self._flat_weights[idx], -a, a) with torch.no_grad(): self._scales[idx] += torch.tensor(v).log() elif "bias" in name: nn.init.constant_(self._flat_weights[idx], 0.0) def _flatten_parameters(self, flat_weights) -> None: """Resets parameter data pointer so that they can use faster code paths. Right now, this works only if the module is on the GPU and cuDNN is enabled. Otherwise, it's a no-op. This function is modified from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py # noqa """ # Short-circuits if _flat_weights is only partially instantiated if len(flat_weights) != len(self._flat_weights_names): return for w in flat_weights: if not isinstance(w, Tensor): return # Short-circuits if any tensor in flat_weights is not acceptable to cuDNN # or the tensors in flat_weights are of different dtypes first_fw = flat_weights[0] dtype = first_fw.dtype for fw in flat_weights: if ( not isinstance(fw.data, Tensor) or not (fw.data.dtype == dtype) or not fw.data.is_cuda or not torch.backends.cudnn.is_acceptable(fw.data) ): return # If any parameters alias, we fall back to the slower, copying code path. This is # a sufficient check, because overlapping parameter buffers that don't completely # alias would break the assumptions of the uniqueness check in # Module.named_parameters(). unique_data_ptrs = set(p.data_ptr() for p in flat_weights) if len(unique_data_ptrs) != len(flat_weights): return with torch.cuda.device_of(first_fw): # Note: no_grad() is necessary since _cudnn_rnn_flatten_weight is # an inplace operation on self._flat_weights with torch.no_grad(): if torch._use_cudnn_rnn_flatten_weight(): num_weights = 4 if self.bias else 2 if self.proj_size > 0: num_weights += 1 torch._cudnn_rnn_flatten_weight( flat_weights, num_weights, self.input_size, rnn.get_cudnn_mode(self.mode), self.hidden_size, self.proj_size, self.num_layers, self.batch_first, bool(self.bidirectional), ) def _get_flat_weights(self): """Get scaled weights, and resets their data pointer.""" flat_weights = [] for idx in range(len(self._flat_weights_names)): flat_weights.append(self._flat_weights[idx] * self._scales[idx].exp()) self._flatten_parameters(flat_weights) return flat_weights def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None): # This function is modified from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py # noqa # The change for calling `_VF.lstm()` is: # self._flat_weights -> self._get_flat_weights() if hx is None: h_zeros = torch.zeros( self.num_layers, input.size(1), self.proj_size if self.proj_size > 0 else self.hidden_size, dtype=input.dtype, device=input.device, ) c_zeros = torch.zeros( self.num_layers, input.size(1), self.hidden_size, dtype=input.dtype, device=input.device, ) hx = (h_zeros, c_zeros) self.check_forward_args(input, hx, None) flat_weights = self._get_flat_weights() input, *flat_weights = self.grad_filter(input, *flat_weights) result = _VF.lstm( input, hx, flat_weights, self.bias, self.num_layers, self.dropout, self.training, self.bidirectional, self.batch_first, ) output = result[0] hidden = result[1:] return output, hidden class ActivationBalancer(torch.nn.Module): """ Modifies the backpropped derivatives of a function to try to encourage, for each channel, that it is positive at least a proportion `threshold` of the time. It does this by multiplying negative derivative values by up to (1+max_factor), and positive derivative values by up to (1-max_factor), interpolated from 1 at the threshold to those extremal values when none of the inputs are positive. Args: channel_dim: the dimension/axis corresponding to the channel, e.g. -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. min_positive: the minimum, per channel, of the proportion of the time that (x > 0), below which we start to modify the derivatives. max_positive: the maximum, per channel, of the proportion of the time that (x > 0), above which we start to modify the derivatives. max_factor: the maximum factor by which we modify the derivatives for either the sign constraint or the magnitude constraint; e.g. with max_factor=0.02, the the derivatives would be multiplied by values in the range [0.98..1.02]. min_abs: the minimum average-absolute-value per channel, which we allow, before we start to modify the derivatives to prevent this. max_abs: the maximum average-absolute-value per channel, which we allow, before we start to modify the derivatives to prevent this. balance_prob: the probability to apply the ActivationBalancer. """ def __init__( self, channel_dim: int, min_positive: float = 0.05, max_positive: float = 0.95, max_factor: float = 0.01, min_abs: float = 0.2, max_abs: float = 100.0, balance_prob: float = 0.25, ): super(ActivationBalancer, self).__init__() self.channel_dim = channel_dim self.min_positive = min_positive self.max_positive = max_positive self.max_factor = max_factor self.min_abs = min_abs self.max_abs = max_abs assert 0 < balance_prob <= 1, balance_prob self.balance_prob = balance_prob def forward(self, x: Tensor) -> Tensor: if random.random() >= self.balance_prob: return x return ActivationBalancerFunction.apply( x, self.channel_dim, self.min_positive, self.max_positive, self.max_factor / self.balance_prob, self.min_abs, self.max_abs, ) class DoubleSwishFunction(torch.autograd.Function): """ double_swish(x) = x * torch.sigmoid(x-1) This is a definition, originally motivated by its close numerical similarity to swish(swish(x)), where swish(x) = x * sigmoid(x). Memory-efficient derivative computation: double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). Now, s'(x) = s(x) * (1-s(x)). double_swish'(x) = x * s'(x) + s(x). = x * s(x) * (1-s(x)) + s(x). = double_swish(x) * (1-s(x)) + s(x) ... so we just need to remember s(x) but not x itself. """ @staticmethod def forward(ctx, x: Tensor) -> Tensor: x = x.detach() s = torch.sigmoid(x - 1.0) y = x * s ctx.save_for_backward(s, y) return y @staticmethod def backward(ctx, y_grad: Tensor) -> Tensor: s, y = ctx.saved_tensors return (y * (1 - s) + s) * y_grad class DoubleSwish(torch.nn.Module): def forward(self, x: Tensor) -> Tensor: """Return double-swish activation function which is an approximation to Swish(Swish(x)), that we approximate closely with x * sigmoid(x-1). """ if torch.jit.is_scripting() or is_jit_tracing(): return x * torch.sigmoid(x - 1.0) else: return DoubleSwishFunction.apply(x) class ScaledEmbedding(nn.Module): r"""This is a modified version of nn.Embedding that introduces a learnable scale on the parameters. Note: due to how we initialize it, it's best used with schedulers like Noam that have a warmup period. It is a simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. Args: num_embeddings (int): size of the dictionary of embeddings embedding_dim (int): the size of each embedding vector padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx` (initialized to zeros) whenever it encounters the index. scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default ``False``. sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See Notes for more details regarding sparse gradients. initial_speed (float, optional): This affects how fast the parameter will learn near the start of training; you can set it to a value less than one if you suspect that a module is contributing to instability near the start of training. Note: regardless of the use of this option, it's best to use schedulers like Noam that have a warm-up period. Alternatively you can set it to more than 1 if you want it to initially train faster. Must be greater than 0. Attributes: weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from :math:`\mathcal{N}(0, 1)` Shape: - Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}` .. note:: Keep in mind that only a limited number of optimizers support sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`), :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`) .. note:: With :attr:`padding_idx` set, the embedding vector at :attr:`padding_idx` is initialized to all zeros. However, note that this vector can be modified afterwards, e.g., using a customized initialization method, and thus changing the vector used to pad the output. The gradient for this vector from :class:`~torch.nn.Embedding` is always zero. Examples:: >>> # an Embedding module containing 10 tensors of size 3 >>> embedding = nn.Embedding(10, 3) >>> # a batch of 2 samples of 4 indices each >>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]]) >>> embedding(input) tensor([[[-0.0251, -1.6902, 0.7172], [-0.6431, 0.0748, 0.6969], [ 1.4970, 1.3448, -0.9685], [-0.3677, -2.7265, -0.1685]], [[ 1.4970, 1.3448, -0.9685], [ 0.4362, -0.4004, 0.9400], [-0.6431, 0.0748, 0.6969], [ 0.9124, -2.3616, 1.1151]]]) >>> # example with padding_idx >>> embedding = nn.Embedding(10, 3, padding_idx=0) >>> input = torch.LongTensor([[0,2,0,5]]) >>> embedding(input) tensor([[[ 0.0000, 0.0000, 0.0000], [ 0.1535, -2.0309, 0.9315], [ 0.0000, 0.0000, 0.0000], [-0.1655, 0.9897, 0.0635]]]) """ __constants__ = [ "num_embeddings", "embedding_dim", "padding_idx", "scale_grad_by_freq", "sparse", ] num_embeddings: int embedding_dim: int padding_idx: int scale_grad_by_freq: bool weight: Tensor sparse: bool def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, scale_grad_by_freq: bool = False, sparse: bool = False, initial_speed: float = 1.0, ) -> None: super(ScaledEmbedding, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.scale_grad_by_freq = scale_grad_by_freq self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters() self.sparse = sparse self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) self.reset_parameters(initial_speed) def reset_parameters(self, initial_speed: float = 1.0) -> None: std = 0.1 / initial_speed nn.init.normal_(self.weight, std=std) nn.init.constant_(self.scale, torch.tensor(1.0 / std).log()) if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: F = torch.nn.functional scale = self.scale.exp() if input.numel() < self.num_embeddings: return ( F.embedding( input, self.weight, self.padding_idx, None, 2.0, # None, 2.0 relate to normalization self.scale_grad_by_freq, self.sparse, ) * scale ) else: return F.embedding( input, self.weight * scale, self.padding_idx, None, 2.0, # None, 2.0 relates to normalization self.scale_grad_by_freq, self.sparse, ) def extra_repr(self) -> str: # s = "{num_embeddings}, {embedding_dim}, scale={scale}" s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" return s.format(**self.__dict__) def _test_activation_balancer_sign(): probs = torch.arange(0, 1, 0.01) N = 1000 x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1)) x = x.detach() x.requires_grad = True m = ActivationBalancer( channel_dim=0, min_positive=0.05, max_positive=0.95, max_factor=0.2, min_abs=0.0, ) y_grad = torch.sign(torch.randn(probs.numel(), N)) y = m(x) y.backward(gradient=y_grad) print("_test_activation_balancer_sign: x = ", x) print("_test_activation_balancer_sign: y grad = ", y_grad) print("_test_activation_balancer_sign: x grad = ", x.grad) def _test_activation_balancer_magnitude(): magnitudes = torch.arange(0, 1, 0.01) N = 1000 x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(-1) x = x.detach() x.requires_grad = True m = ActivationBalancer( channel_dim=0, min_positive=0.0, max_positive=1.0, max_factor=0.2, min_abs=0.2, max_abs=0.8, ) y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) y = m(x) y.backward(gradient=y_grad) print("_test_activation_balancer_magnitude: x = ", x) print("_test_activation_balancer_magnitude: y grad = ", y_grad) print("_test_activation_balancer_magnitude: x grad = ", x.grad) def _test_basic_norm(): num_channels = 128 m = BasicNorm(num_channels=num_channels, channel_dim=1) x = torch.randn(500, num_channels) y = m(x) assert y.shape == x.shape x_rms = (x**2).mean().sqrt() y_rms = (y**2).mean().sqrt() print("x rms = ", x_rms) print("y rms = ", y_rms) assert y_rms < x_rms assert y_rms > 0.5 * x_rms def _test_double_swish_deriv(): x = torch.randn(10, 12, dtype=torch.double) * 0.5 x.requires_grad = True m = DoubleSwish() torch.autograd.gradcheck(m, x) def _test_scaled_lstm(): N, L = 2, 30 dim_in, dim_hidden = 10, 20 m = ScaledLSTM(input_size=dim_in, hidden_size=dim_hidden, bias=True) x = torch.randn(L, N, dim_in) h0 = torch.randn(1, N, dim_hidden) c0 = torch.randn(1, N, dim_hidden) y, (h, c) = m(x, (h0, c0)) assert y.shape == (L, N, dim_hidden) assert h.shape == (1, N, dim_hidden) assert c.shape == (1, N, dim_hidden) def _test_grad_filter(): threshold = 50.0 time, batch, channel = 200, 5, 128 grad_filter = GradientFilter(batch_dim=1, threshold=threshold) for i in range(2): x = torch.randn(time, batch, channel, requires_grad=True) w = nn.Parameter(torch.ones(5)) b = nn.Parameter(torch.zeros(5)) x_out, w_out, b_out = grad_filter(x, w, b) w_out_grad = torch.randn_like(w) b_out_grad = torch.randn_like(b) x_out_grad = torch.rand_like(x) if i % 2 == 1: # The gradient norm of the first element must be larger than # `threshold * median`, where `median` is the median value # of gradient norms of all elements in batch. x_out_grad[:, 0, :] = torch.full((time, channel), threshold) torch.autograd.backward( [x_out, w_out, b_out], [x_out_grad, w_out_grad, b_out_grad] ) print( "_test_grad_filter: for gradient norms, the first element > median * threshold ", # noqa i % 2 == 1, ) print( "_test_grad_filter: x_out_grad norm = ", (x_out_grad**2).mean(dim=(0, 2)).sqrt(), ) print( "_test_grad_filter: x.grad norm = ", (x.grad**2).mean(dim=(0, 2)).sqrt(), ) print("_test_grad_filter: w_out_grad = ", w_out_grad) print("_test_grad_filter: w.grad = ", w.grad) print("_test_grad_filter: b_out_grad = ", b_out_grad) print("_test_grad_filter: b.grad = ", b.grad) if __name__ == "__main__": _test_activation_balancer_sign() _test_activation_balancer_magnitude() _test_basic_norm() _test_double_swish_deriv() _test_scaled_lstm() _test_grad_filter()