# Copyright 2021 Piotr Żelasko # Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import inspect import logging from functools import lru_cache from pathlib import Path from typing import Any, Dict, Optional import torch from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures CutConcatenate, CutMix, DynamicBucketingSampler, K2SpeechRecognitionDataset, PrecomputedFeatures, SingleCutSampler, SpecAugment, ) from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples AudioSamples, OnTheFlyFeatures, ) from lhotse.utils import fix_random_seed from torch.utils.data import DataLoader from icefall.utils import str2bool class _SeedWorkers: def __init__(self, seed: int): self.seed = seed def __call__(self, worker_id: int): fix_random_seed(self.seed + worker_id) class LibriSpeechAsrDataModule: """ DataModule for k2 ASR experiments. It assumes there is always one train and valid dataloader, but there can be multiple test dataloaders (e.g. LibriSpeech test-clean and test-other). It contains all the common data pipeline modules used in ASR experiments, e.g.: - dynamic batch size, - bucketing samplers, - cut concatenation, - augmentation, - on-the-fly feature extraction This class should be derived for specific corpora used in ASR tasks. """ def __init__(self, args: argparse.Namespace): self.args = args @classmethod def add_arguments(cls, parser: argparse.ArgumentParser): group = parser.add_argument_group( title="ASR data related options", description="These options are used for the preparation of " "PyTorch DataLoaders from Lhotse CutSet's -- they control the " "effective batch sizes, sampling strategies, applied data " "augmentations, etc.", ) group.add_argument( "--full-libri", type=str2bool, default=True, help="When enabled, use 960h LibriSpeech. Otherwise, use 100h subset.", ) group.add_argument( "--manifest-dir", type=Path, default=Path("data/fbank"), help="Path to directory with train/valid/test cuts.", ) group.add_argument( "--max-duration", type=int, default=200.0, help="Maximum pooled recordings duration (seconds) in a " "single batch. You can reduce it if it causes CUDA OOM.", ) group.add_argument( "--bucketing-sampler", type=str2bool, default=True, help="When enabled, the batches will come from buckets of " "similar duration (saves padding frames).", ) group.add_argument( "--num-buckets", type=int, default=30, help="The number of buckets for the DynamicBucketingSampler" "(you might want to increase it for larger datasets).", ) group.add_argument( "--concatenate-cuts", type=str2bool, default=False, help="When enabled, utterances (cuts) will be concatenated " "to minimize the amount of padding.", ) group.add_argument( "--duration-factor", type=float, default=1.0, help="Determines the maximum duration of a concatenated cut " "relative to the duration of the longest cut in a batch.", ) group.add_argument( "--gap", type=float, default=1.0, help="The amount of padding (in seconds) inserted between " "concatenated cuts. This padding is filled with noise when " "noise augmentation is used.", ) group.add_argument( "--on-the-fly-feats", type=str2bool, default=False, help="When enabled, use on-the-fly cut mixing and feature " "extraction. Will drop existing precomputed feature manifests " "if available.", ) group.add_argument( "--shuffle", type=str2bool, default=True, help="When enabled (=default), the examples will be " "shuffled for each epoch.", ) group.add_argument( "--drop-last", type=str2bool, default=True, help="Whether to drop last batch. Used by sampler.", ) group.add_argument( "--return-cuts", type=str2bool, default=True, help="When enabled, each batch will have the " "field: batch['supervisions']['cut'] with the cuts that " "were used to construct it.", ) group.add_argument( "--num-workers", type=int, default=2, help="The number of training dataloader workers that " "collect the batches.", ) group.add_argument( "--enable-spec-aug", type=str2bool, default=True, help="When enabled, use SpecAugment for training dataset.", ) group.add_argument( "--spec-aug-time-warp-factor", type=int, default=80, help="Used only when --enable-spec-aug is True. " "It specifies the factor for time warping in SpecAugment. " "Larger values mean more warping. " "A value less than 1 means to disable time warp.", ) group.add_argument( "--enable-musan", type=str2bool, default=True, help="When enabled, select noise from MUSAN and mix it" "with training dataset. ", ) group.add_argument( "--input-strategy", type=str, default="PrecomputedFeatures", help="AudioSamples or PrecomputedFeatures", ) def train_dataloaders( self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None, ) -> DataLoader: """ Args: cuts_train: CutSet for training. sampler_state_dict: The state dict for the training sampler. """ transforms = [] if self.args.enable_musan: logging.info("Enable MUSAN") logging.info("About to get Musan cuts") cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz") transforms.append( CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True) ) else: logging.info("Disable MUSAN") if self.args.concatenate_cuts: logging.info( f"Using cut concatenation with duration factor " f"{self.args.duration_factor} and gap {self.args.gap}." ) # Cut concatenation should be the first transform in the list, # so that if we e.g. mix noise in, it will fill the gaps between # different utterances. transforms = [ CutConcatenate( duration_factor=self.args.duration_factor, gap=self.args.gap ) ] + transforms input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}") # Set the value of num_frame_masks according to Lhotse's version. # In different Lhotse's versions, the default of num_frame_masks is # different. num_frame_masks = 10 num_frame_masks_parameter = inspect.signature( SpecAugment.__init__ ).parameters["num_frame_masks"] if num_frame_masks_parameter.default == 1: num_frame_masks = 2 logging.info(f"Num frame mask: {num_frame_masks}") input_transforms.append( SpecAugment( time_warp_factor=self.args.spec_aug_time_warp_factor, num_frame_masks=num_frame_masks, features_mask_size=27, num_feature_masks=2, frames_mask_size=100, ) ) else: logging.info("Disable SpecAugment") logging.info("About to create train dataset") train = K2SpeechRecognitionDataset( input_strategy=eval(self.args.input_strategy)(), cut_transforms=transforms, input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) if self.args.on_the_fly_feats: # NOTE: the PerturbSpeed transform should be added only if we # remove it from data prep stage. # Add on-the-fly speed perturbation; since originally it would # have increased epoch size by 3, we will apply prob 2/3 and use # 3x more epochs. # Speed perturbation probably should come first before # concatenation, but in principle the transforms order doesn't have # to be strict (e.g. could be randomized) # transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa # Drop feats to be on the safe side. train = K2SpeechRecognitionDataset( cut_transforms=transforms, input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), input_transforms=input_transforms, return_cuts=self.args.return_cuts, ) if self.args.bucketing_sampler: logging.info("Using DynamicBucketingSampler.") train_sampler = DynamicBucketingSampler( cuts_train, max_duration=self.args.max_duration, shuffle=self.args.shuffle, num_buckets=self.args.num_buckets, drop_last=self.args.drop_last, ) else: logging.info("Using SingleCutSampler.") train_sampler = SingleCutSampler( cuts_train, max_duration=self.args.max_duration, shuffle=self.args.shuffle, ) logging.info("About to create train dataloader") if sampler_state_dict is not None: logging.info("Loading sampler state dict") train_sampler.load_state_dict(sampler_state_dict) # 'seed' is derived from the current random state, which will have # previously been set in the main process. seed = torch.randint(0, 100000, ()).item() worker_init_fn = _SeedWorkers(seed) train_dl = DataLoader( train, sampler=train_sampler, batch_size=None, num_workers=self.args.num_workers, persistent_workers=False, worker_init_fn=worker_init_fn, ) return train_dl def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: transforms = [] if self.args.concatenate_cuts: transforms = [ CutConcatenate( duration_factor=self.args.duration_factor, gap=self.args.gap ) ] + transforms logging.info("About to create dev dataset") if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))), return_cuts=self.args.return_cuts, ) else: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, return_cuts=self.args.return_cuts, ) valid_sampler = DynamicBucketingSampler( cuts_valid, max_duration=self.args.max_duration, shuffle=False, ) logging.info("About to create dev dataloader") valid_dl = DataLoader( validate, sampler=valid_sampler, batch_size=None, num_workers=2, persistent_workers=False, ) return valid_dl def test_dataloaders(self, cuts: CutSet) -> DataLoader: logging.debug("About to create test dataset") test = K2SpeechRecognitionDataset( input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) if self.args.on_the_fly_feats else eval(self.args.input_strategy)(), return_cuts=self.args.return_cuts, ) sampler = DynamicBucketingSampler( cuts, max_duration=self.args.max_duration, shuffle=False, ) logging.debug("About to create test dataloader") test_dl = DataLoader( test, batch_size=None, sampler=sampler, num_workers=self.args.num_workers, ) return test_dl @lru_cache() def train_clean_100_cuts(self) -> CutSet: logging.info("About to get train-clean-100 cuts") return load_manifest_lazy( self.args.manifest_dir / "err2020_cuts_train.jsonl.gz" ) # @lru_cache() # def train_clean_360_cuts(self) -> CutSet: # logging.info("About to get train-clean-360 cuts") # return load_manifest_lazy( # self.args.manifest_dir / "librispeech_cuts_train-clean-360.jsonl.gz" # ) # @lru_cache() # def train_other_500_cuts(self) -> CutSet: # logging.info("About to get train-other-500 cuts") # return load_manifest_lazy( # self.args.manifest_dir / "librispeech_cuts_train-other-500.jsonl.gz" # ) @lru_cache() def train_all_shuf_cuts(self) -> CutSet: logging.info( "About to get the shuffled train-clean-100, \ train-clean-360 and train-other-500 cuts" ) return load_manifest_lazy( # self.args.manifest_dir / "librispeech_cuts_train-all-shuf.jsonl.gz" self.args.manifest_dir / "err2020_cuts_train-all-shuf.jsonl.gz" ) @lru_cache() def dev_clean_cuts(self) -> CutSet: logging.info("About to get dev-clean cuts") return load_manifest_lazy( # self.args.manifest_dir / "librispeech_cuts_dev-clean.jsonl.gz" self.args.manifest_dir / "err2020_cuts_validation.jsonl.gz" ) # @lru_cache() # def dev_other_cuts(self) -> CutSet: # logging.info("About to get dev-other cuts") # return load_manifest_lazy( # # self.args.manifest_dir / "librispeech_cuts_dev-other.jsonl.gz" # self.args.manifest_dir / "err2020_cuts_validation.jsonl.gz" # ) @lru_cache() def test_clean_cuts(self) -> CutSet: logging.info("About to get test-clean cuts") return load_manifest_lazy( # self.args.manifest_dir / "librispeech_cuts_test-clean.jsonl.gz" self.args.manifest_dir / "err2020_cuts_test.jsonl.gz" ) # @lru_cache() # def test_other_cuts(self) -> CutSet: # logging.info("About to get test-other cuts") # return load_manifest_lazy( # self.args.manifest_dir / "librispeech_cuts_test-other.jsonl.gz" # self.args.manifest_dir / "err2020_cuts_test.jsonl.gz" # )