File size: 9,638 Bytes
c74e5ad e9867c0 c74e5ad e9867c0 9847c3c e9867c0 c74e5ad 9847c3c c74e5ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
model-index:
- name: ryan03302024
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ryan03302024
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the properties dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2044
- Ordinal Mae: 0.4324
- Ordinal Accuracy: 0.6648
- Na Accuracy: 0.8333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Ordinal Mae | Ordinal Accuracy | Na Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:----------------:|:-----------:|
| 0.3617 | 0.04 | 100 | 0.3133 | 0.8466 | 0.4174 | 0.8763 |
| 0.2891 | 0.07 | 200 | 0.3022 | 0.7739 | 0.5045 | 0.6993 |
| 0.3163 | 0.11 | 300 | 0.2615 | 0.6167 | 0.5597 | 0.7904 |
| 0.2781 | 0.14 | 400 | 0.2598 | 0.5433 | 0.5936 | 0.8299 |
| 0.2731 | 0.18 | 500 | 0.2613 | 0.5651 | 0.5566 | 0.8454 |
| 0.2926 | 0.22 | 600 | 0.2734 | 0.5305 | 0.5494 | 0.9089 |
| 0.2686 | 0.25 | 700 | 0.2362 | 0.4853 | 0.6250 | 0.7887 |
| 0.2715 | 0.29 | 800 | 0.2454 | 0.4914 | 0.6255 | 0.7715 |
| 0.2459 | 0.32 | 900 | 0.2452 | 0.4763 | 0.6072 | 0.7801 |
| 0.2033 | 0.36 | 1000 | 0.2365 | 0.4967 | 0.6106 | 0.7663 |
| 0.2234 | 0.4 | 1100 | 0.2299 | 0.4947 | 0.6180 | 0.8677 |
| 0.2035 | 0.43 | 1200 | 0.2314 | 0.4744 | 0.6309 | 0.7835 |
| 0.2277 | 0.47 | 1300 | 0.2389 | 0.4649 | 0.6435 | 0.7302 |
| 0.2535 | 0.5 | 1400 | 0.2259 | 0.4509 | 0.6021 | 0.8247 |
| 0.2209 | 0.54 | 1500 | 0.2369 | 0.4507 | 0.6363 | 0.7577 |
| 0.2007 | 0.58 | 1600 | 0.2161 | 0.4272 | 0.6540 | 0.8316 |
| 0.2013 | 0.61 | 1700 | 0.2433 | 0.4326 | 0.6129 | 0.7732 |
| 0.1999 | 0.65 | 1800 | 0.2227 | 0.4460 | 0.6553 | 0.8247 |
| 0.2157 | 0.69 | 1900 | 0.2134 | 0.4728 | 0.6363 | 0.8162 |
| 0.2154 | 0.72 | 2000 | 0.2239 | 0.4734 | 0.5787 | 0.8574 |
| 0.2169 | 0.76 | 2100 | 0.2394 | 0.4392 | 0.6255 | 0.8849 |
| 0.2719 | 0.79 | 2200 | 0.2283 | 0.4324 | 0.6229 | 0.8780 |
| 0.2244 | 0.83 | 2300 | 0.2140 | 0.4483 | 0.6314 | 0.8729 |
| 0.2072 | 0.87 | 2400 | 0.2198 | 0.4330 | 0.6440 | 0.8213 |
| 0.1754 | 0.9 | 2500 | 0.2099 | 0.4198 | 0.6712 | 0.8419 |
| 0.1773 | 0.94 | 2600 | 0.2053 | 0.4105 | 0.6586 | 0.8643 |
| 0.2378 | 0.97 | 2700 | 0.2044 | 0.4324 | 0.6648 | 0.8333 |
| 0.1295 | 1.01 | 2800 | 0.2044 | 0.4016 | 0.6843 | 0.8247 |
| 0.1126 | 1.05 | 2900 | 0.2302 | 0.4025 | 0.6805 | 0.7577 |
| 0.1262 | 1.08 | 3000 | 0.2205 | 0.4017 | 0.6517 | 0.8093 |
| 0.1104 | 1.12 | 3100 | 0.2117 | 0.3931 | 0.6779 | 0.8454 |
| 0.1657 | 1.15 | 3200 | 0.2174 | 0.3890 | 0.6666 | 0.8591 |
| 0.1186 | 1.19 | 3300 | 0.2299 | 0.4013 | 0.6622 | 0.8058 |
| 0.1304 | 1.23 | 3400 | 0.2176 | 0.3801 | 0.6902 | 0.8110 |
| 0.1081 | 1.26 | 3500 | 0.2330 | 0.3867 | 0.6643 | 0.8316 |
| 0.1281 | 1.3 | 3600 | 0.2320 | 0.3954 | 0.6902 | 0.7680 |
| 0.1192 | 1.33 | 3700 | 0.2312 | 0.4109 | 0.6769 | 0.7990 |
| 0.1029 | 1.37 | 3800 | 0.2195 | 0.3870 | 0.6820 | 0.8024 |
| 0.1159 | 1.41 | 3900 | 0.2200 | 0.3860 | 0.6812 | 0.7904 |
| 0.1159 | 1.44 | 4000 | 0.2159 | 0.3712 | 0.6982 | 0.7990 |
| 0.107 | 1.48 | 4100 | 0.2262 | 0.3757 | 0.6905 | 0.8213 |
| 0.1262 | 1.51 | 4200 | 0.2291 | 0.3841 | 0.6835 | 0.8247 |
| 0.1437 | 1.55 | 4300 | 0.2311 | 0.3751 | 0.6923 | 0.8007 |
| 0.0916 | 1.59 | 4400 | 0.2343 | 0.3743 | 0.6792 | 0.8660 |
| 0.1266 | 1.62 | 4500 | 0.2251 | 0.3724 | 0.6861 | 0.8505 |
| 0.1185 | 1.66 | 4600 | 0.2242 | 0.3666 | 0.6902 | 0.8265 |
| 0.1037 | 1.69 | 4700 | 0.2219 | 0.3700 | 0.6846 | 0.8522 |
| 0.1264 | 1.73 | 4800 | 0.2211 | 0.3677 | 0.6892 | 0.8351 |
| 0.1404 | 1.77 | 4900 | 0.2206 | 0.3718 | 0.6946 | 0.7938 |
| 0.1238 | 1.8 | 5000 | 0.2098 | 0.3723 | 0.6948 | 0.8265 |
| 0.0868 | 1.84 | 5100 | 0.2089 | 0.3574 | 0.7025 | 0.8144 |
| 0.0828 | 1.88 | 5200 | 0.2204 | 0.3680 | 0.7031 | 0.7818 |
| 0.0986 | 1.91 | 5300 | 0.2126 | 0.3543 | 0.6982 | 0.8127 |
| 0.0869 | 1.95 | 5400 | 0.2247 | 0.3532 | 0.7108 | 0.8076 |
| 0.1006 | 1.98 | 5500 | 0.2268 | 0.3637 | 0.7028 | 0.8162 |
| 0.0639 | 2.02 | 5600 | 0.2252 | 0.3479 | 0.7069 | 0.8110 |
| 0.0569 | 2.06 | 5700 | 0.2315 | 0.3399 | 0.7167 | 0.8076 |
| 0.0626 | 2.09 | 5800 | 0.2304 | 0.3481 | 0.7028 | 0.8127 |
| 0.0502 | 2.13 | 5900 | 0.2381 | 0.3624 | 0.6954 | 0.8093 |
| 0.0541 | 2.16 | 6000 | 0.2298 | 0.3405 | 0.7159 | 0.8110 |
| 0.0671 | 2.2 | 6100 | 0.2432 | 0.3529 | 0.7031 | 0.7990 |
| 0.0672 | 2.24 | 6200 | 0.2431 | 0.3361 | 0.7195 | 0.7715 |
| 0.0446 | 2.27 | 6300 | 0.2447 | 0.3401 | 0.7141 | 0.7938 |
| 0.0424 | 2.31 | 6400 | 0.2426 | 0.3485 | 0.7018 | 0.8162 |
| 0.0386 | 2.34 | 6500 | 0.2488 | 0.3387 | 0.7123 | 0.8127 |
| 0.0736 | 2.38 | 6600 | 0.2454 | 0.3382 | 0.7054 | 0.8316 |
| 0.0421 | 2.42 | 6700 | 0.2513 | 0.3394 | 0.7120 | 0.8316 |
| 0.0607 | 2.45 | 6800 | 0.2546 | 0.3370 | 0.7092 | 0.8265 |
| 0.0517 | 2.49 | 6900 | 0.2594 | 0.3376 | 0.7082 | 0.8299 |
| 0.062 | 2.52 | 7000 | 0.2533 | 0.3369 | 0.7105 | 0.8110 |
| 0.0664 | 2.56 | 7100 | 0.2534 | 0.3329 | 0.7185 | 0.8024 |
| 0.0389 | 2.6 | 7200 | 0.2470 | 0.3288 | 0.7259 | 0.8093 |
| 0.0671 | 2.63 | 7300 | 0.2516 | 0.3294 | 0.7159 | 0.8041 |
| 0.0416 | 2.67 | 7400 | 0.2507 | 0.3307 | 0.7133 | 0.8058 |
| 0.0541 | 2.7 | 7500 | 0.2529 | 0.3355 | 0.7110 | 0.8058 |
| 0.0374 | 2.74 | 7600 | 0.2530 | 0.3315 | 0.7149 | 0.8110 |
| 0.04 | 2.78 | 7700 | 0.2520 | 0.3290 | 0.7167 | 0.8076 |
| 0.0507 | 2.81 | 7800 | 0.2555 | 0.3297 | 0.7105 | 0.8127 |
| 0.0379 | 2.85 | 7900 | 0.2531 | 0.3274 | 0.7162 | 0.8127 |
| 0.0736 | 2.88 | 8000 | 0.2526 | 0.3279 | 0.7164 | 0.8196 |
| 0.0589 | 2.92 | 8100 | 0.2522 | 0.3267 | 0.7144 | 0.8162 |
| 0.0449 | 2.96 | 8200 | 0.2521 | 0.3272 | 0.7149 | 0.8162 |
| 0.0498 | 2.99 | 8300 | 0.2520 | 0.3265 | 0.7167 | 0.8144 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|