rudrashah commited on
Commit
dc88a0f
·
verified ·
1 Parent(s): fdac261

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -3
README.md CHANGED
@@ -1,3 +1,42 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - cmu_hinglish_dog
5
+ language:
6
+ - en
7
+ library_name: keras
8
+ pipeline_tag: translation
9
+ tags:
10
+ - hinglish
11
+ - translation
12
+ - hinglish to english
13
+ - language translation
14
+ - keras
15
+ - keras nlp
16
+ - nlp
17
+ - transformers
18
+ - gemma
19
+ - gemma2b
20
+ ---
21
+ # Project Hinglish - A Hinglish to English Language Translater.
22
+
23
+ Project Hinglish aims to develop a high-performance language translation model capable of translating Hinglish (a blend of Hindi and English commonly used in informal communication in India) to standard English.
24
+ The model is fine-tuned over gemma-2b using PEFT(LoRA) method using the rank 128. Aim of this model is for handling the unique syntactical and lexical characteristics of Hinglish.
25
+
26
+ # Fine-Tune Method:
27
+
28
+ - **Fine-Tuning Approach Using PEFT (LoRA):** The fine-tuning employs Parameter-efficient Fine Tuning (PEFT) techniques, particularly using LoRA (Low-Rank Adaptation). LoRA modifies a pre-trained model efficiently by introducing low-rank matrices that adapt the model’s attention and feed-forward layers. This method allows significant model adaptation with minimal updates to the parameters, preserving the original model's strengths while adapting it effectively to the nuances of Hinglish.
29
+ - **Dataset:** cmu_hinglish_dog + Combination of sentences taken from my own dialy life chats with friends and Uber Messages.
30
+
31
+ # Example Output
32
+
33
+ ![Example IO](io1.png)
34
+
35
+ # Usage
36
+ ``` python
37
+ # Load model directly
38
+ from transformers import AutoTokenizer, AutoModelForCausalLM
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained("rudrashah/RLM-hinglish-translator")
41
+ model = AutoModelForCausalLM.from_pretrained("rudrashah/RLM-hinglish-translator")
42
+ ```