Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ datasets:
|
|
12 |
- assin2
|
13 |
---
|
14 |
|
15 |
-
# rufimelo/Legal-SBERTimbau-large
|
16 |
|
17 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
18 |
Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large.
|
@@ -32,7 +32,7 @@ Then you can use the model like this:
|
|
32 |
from sentence_transformers import SentenceTransformer
|
33 |
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
|
34 |
|
35 |
-
model = SentenceTransformer('rufimelo/Legal-SBERTimbau-large')
|
36 |
embeddings = model.encode(sentences)
|
37 |
print(embeddings)
|
38 |
```
|
@@ -58,8 +58,8 @@ def mean_pooling(model_output, attention_mask):
|
|
58 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
59 |
|
60 |
# Load model from HuggingFace Hub
|
61 |
-
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-large')
|
62 |
-
model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-large}')
|
63 |
|
64 |
# Tokenize sentences
|
65 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -106,4 +106,15 @@ SentenceTransformer(
|
|
106 |
|
107 |
## Citing & Authors
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
- assin2
|
13 |
---
|
14 |
|
15 |
+
# rufimelo/Legal-SBERTimbau-nli-large
|
16 |
|
17 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
18 |
Legal-SBERTimbau-large is based on Legal-BERTimbau-large whioch derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large.
|
|
|
32 |
from sentence_transformers import SentenceTransformer
|
33 |
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
|
34 |
|
35 |
+
model = SentenceTransformer('rufimelo/Legal-SBERTimbau-nli-large')
|
36 |
embeddings = model.encode(sentences)
|
37 |
print(embeddings)
|
38 |
```
|
|
|
58 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
59 |
|
60 |
# Load model from HuggingFace Hub
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large')
|
62 |
+
model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-nli-large}')
|
63 |
|
64 |
# Tokenize sentences
|
65 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
106 |
|
107 |
## Citing & Authors
|
108 |
|
109 |
+
If you use this work, please cite BERTimbau's work:
|
110 |
+
|
111 |
+
```bibtex
|
112 |
+
@inproceedings{souza2020bertimbau,
|
113 |
+
author = {F{\'a}bio Souza and
|
114 |
+
Rodrigo Nogueira and
|
115 |
+
Roberto Lotufo},
|
116 |
+
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
|
117 |
+
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
|
118 |
+
year = {2020}
|
119 |
+
}
|
120 |
+
```
|