File size: 3,809 Bytes
80ff25f
 
 
bff8aa5
80ff25f
bff8aa5
 
80ff25f
bff8aa5
80ff25f
27bf0e3
bff8aa5
 
 
 
80ff25f
 
 
 
 
bff8aa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ff25f
bff8aa5
80ff25f
bff8aa5
80ff25f
bff8aa5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
base_model: ibm-granite/granite-3.1-2b-instruct
tags:
- text-generation
- transformers
- safetensors
- english
- granite
- text-generation-inference
- trl
- grpo
- conversational
- inference-endpoints
- 4-bit precision
- bitsandbytes
license: apache-2.0
language:
- en
---

# Granite-3.1-2B-Reasoning-4bit (Quantized for Efficiency)

## Model Overview

This is a **4-bit quantized version** of **ruslanmv/granite-3.1-2b-Reasoning**, which is fine-tuned from **ibm-granite/granite-3.1-2b-instruct**. The quantization allows for significantly reduced memory usage while maintaining strong reasoning capabilities.  

- **Developed by:** [ruslanmv](https://huggingface.co/ruslanmv)  
- **License:** Apache 2.0  
- **Base Model:** [ibm-granite/granite-3.1-2b-instruct](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct)  
- **Fine-tuned for:** Logical reasoning, structured problem-solving, long-context tasks  
- **Quantized with:** **bitsandbytes (4-bit precision)**  
- **Supported Languages:** English  
- **Tensor Type:** **BF16**  
- **Parameter Size:** **2.53B params**  

---

## Why Use the Quantized Version?

This **4-bit quantized model** is ideal for users who require **fast inference speeds and reduced memory usage** while still benefiting from **Granite's advanced reasoning capabilities**.  

✅ **2x Faster Training** compared to standard methods  
✅ **Lower VRAM usage**, ideal for consumer GPUs  
✅ **Optimized for inference**, making it more efficient for deployment  

---

## Installation & Usage  

To run the quantized model, install the required dependencies:  

```bash
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
pip install bitsandbytes
```

### Running the Model  

Use the following Python snippet to load and generate text with the **4-bit quantized** model:  

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import bitsandbytes as bnb

device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = "ruslanmv/granite-3.1-2b-Reasoning-4bit"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path, 
    device_map="auto",
    load_in_4bit=True,  # Load model in 4-bit precision
    quantization_config=bnb.QuantizationConfig(llm_int8_threshold=6.0)
)
model.eval()

input_text = "Can you explain the difference between inductive and deductive reasoning?"
input_tokens = tokenizer(input_text, return_tensors="pt").to(device)

output = model.generate(**input_tokens, max_length=4000)
output_text = tokenizer.batch_decode(output)

print(output_text)
```

---

## Intended Use  

Granite-3.1-2B-Reasoning-4bit is designed for tasks requiring structured **reasoning**, including:  

- **Logical and analytical problem-solving**  
- **Text-based reasoning tasks**  
- **Mathematical and symbolic reasoning**  
- **Advanced instruction-following**  

This model is particularly useful for users needing a **lightweight, high-performance** version of **Granite-3.1-2B-Reasoning** without sacrificing too much accuracy.

---

## License & Acknowledgments  

This model is released under the **Apache 2.0** license. It is fine-tuned from IBM’s **Granite 3.1-2B-Instruct** model and **quantized using bitsandbytes** for optimal efficiency. Special thanks to the **IBM Granite Team** for developing the base model.  

For more details, visit the [IBM Granite Documentation](https://huggingface.co/ibm-granite).  

---

### Citation  

If you use this model in your research or applications, please cite:  

```
@misc{ruslanmv2025granite,
  title={Fine-Tuning and Quantizing Granite-3.1 for Advanced Reasoning},
  author={Ruslan M.V.},
  year={2025},
  url={https://huggingface.co/ruslanmv/granite-3.1-2b-Reasoning-4bit}
}
```