File size: 1,916 Bytes
d8b5db9
 
 
067ded2
 
 
 
 
d8b5db9
067ded2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b5db9
 
067ded2
 
d8b5db9
067ded2
d8b5db9
067ded2
d8b5db9
067ded2
 
d8b5db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
067ded2
 
 
 
 
 
 
d8b5db9
 
 
067ded2
 
 
 
 
 
 
d8b5db9
 
 
 
067ded2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sst2
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      config: sst2
      split: validation
      args: sst2
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.911697247706422
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-sst2

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3574
- Accuracy: 0.9117

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1867        | 1.0   | 4210  | 0.3226          | 0.9071   |
| 0.1277        | 2.0   | 8420  | 0.3630          | 0.9037   |
| 0.1027        | 3.0   | 12630 | 0.3574          | 0.9117   |
| 0.0659        | 4.0   | 16840 | 0.4427          | 0.9048   |
| 0.0334        | 5.0   | 21050 | 0.4979          | 0.9083   |


### Framework versions

- Transformers 4.27.1
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2