{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001E2942FF080>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2442732, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714940559893010300, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAN4PSvriyIz90aD8+a9UOv7z2MT9RZz8+ofhXv48Wbz9PZz8+G/m4vAmV8z42Zz8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0vKcP+iJL79PyNI+0gQNv3yCcD/2MGO/TtQ/P+ZVtT/KqYq/8ua1v0WMr7/KqYq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAMNok9gTntvTmror4DezI/dV2FP6aYVz/baKU/N4PSvriyIz90aD8+XtVavPMfabwgg2O8SuRTPee3JjxZ4a490ZxpOjW65byrFXC8nnA+P0CFlz+NEJQ+AwwGP5SbVz91tXo/93elP2vVDr+89jE/UWc/PkVjW7y7JWi8T49UvCNsVD1qWSk8xt2uPZAMaTpqAea8+j1svJXQHT5Kb8W+1cj+vpCZJz/Sq7s/njP/Pkj5pD+h+Fe/jxZvP09nPz6oY1u8BCVovHErWbzda1Q9q1gpPAHerj3mVWk6ggTmvKQ9bLzyFAq9EaV3P6IRA76Cgau/aFyQvwBKt787Il2/G/m4vAmV8z42Zz8+mytbvINYaLwiglW8SQtTPaSFIDy2s649CsRCO84D77zPB3C8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.41115734 0.6394458 0.1869219 ]\n [-0.557944 0.6951711 0.18691756]\n [-0.8436375 0.93393797 0.18691753]\n [-0.02257972 0.47574642 0.18691716]]", "desired_goal": "[[ 1.2261603 -0.68569803 0.41168448]\n [-0.5508548 0.93949103 -0.88746583]\n [ 0.74933326 1.4166839 -1.0833066 ]\n [-1.4211104 -1.3714682 -1.0833066 ]]", "observation": "[[ 6.69976175e-02 -1.15832336e-01 -3.17712575e-01 6.97189510e-01\n 1.04191458e+00 8.42172980e-01 1.29226243e+00 -4.11157340e-01\n 6.39445782e-01 1.86921895e-01 -1.33565348e-02 -1.42288087e-02\n -1.38862431e-02 5.17313853e-02 1.01756817e-02 8.53907540e-02\n 8.91161209e-04 -2.80428920e-02 -1.46536035e-02]\n [ 7.43905902e-01 1.18375397e+00 2.89188772e-01 5.23620784e-01\n 8.42217684e-01 9.79331315e-01 1.29272354e+00 -5.57944000e-01\n 6.95171118e-01 1.86917558e-01 -1.33903669e-02 -1.41691519e-02\n -1.29736206e-02 5.18609397e-02 1.03362594e-02 8.53839368e-02\n 8.89011659e-04 -2.80768462e-02 -1.44190732e-02]\n [ 1.54115990e-01 -3.85614693e-01 -4.97625977e-01 6.54686928e-01\n 1.46618104e+00 4.98440683e-01 1.28885746e+00 -8.43637526e-01\n 9.33937967e-01 1.86917529e-01 -1.33904591e-02 -1.41689815e-02\n -1.32549861e-02 5.18606789e-02 1.03360815e-02 8.53843763e-02\n 8.90104449e-04 -2.80783214e-02 -1.44189931e-02]\n [-3.37113813e-02 9.67362463e-01 -1.27996951e-01 -1.33988976e+00\n -1.12782001e+00 -1.43194580e+00 -8.63803566e-01 -2.25797202e-02\n 4.75746423e-01 1.86917156e-01 -1.33770956e-02 -1.41812591e-02\n -1.30315144e-02 5.15244342e-02 9.79748741e-03 8.53037089e-02\n 2.97188992e-03 -2.91766189e-02 -1.46502992e-02]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA+QrmPYUmqjwK16M8AkRTO9Gn070K16M8iozXvWT4DD4K16M8Dx7fO1OqErwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvbjEveRmAL663hk+w78GvrtpFD7iwDM+iCMZvoS1Gj0K16M8DeHFvZWdsL0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA+QrmPYUmqjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAAJEUzvRp9O9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACKjNe9ZPgMPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAADx7fO1OqErwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.11232562 0.02077032 0.02 ]\n [ 0.00322366 -0.10334743 0.02 ]\n [-0.10524853 0.13766629 0.02 ]\n [ 0.006809 -0.00895174 0.02 ]]", "desired_goal": "[[-0.09605549 -0.1253925 0.1502637 ]\n [-0.13159089 0.14493458 0.17554048]\n [-0.1495496 0.03777076 0.02 ]\n [-0.09662066 -0.08623806 0.02 ]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.12325616e-01\n 2.07703207e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 3.22365807e-03\n -1.03347428e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.05248526e-01\n 1.37666285e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.80900319e-03\n -8.95174127e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.511456, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C2eirNr0rcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2ek4zvZyudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2epLyDqW1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2eq+/1xsEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2epV/pdKNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2er4YFaB7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2ewJbpu/DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2ex/p+tr9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C2eyH8n/kvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2ewkFfReDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2eywHE/B4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e24ysS00dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e4vtlZoxdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C2e4/ttyggdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e3NhE0BPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e5hJul41dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e9jGT9sKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e/m8274BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e998iOebdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2e//Abhm5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fEBQaaTfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fGFHBk7PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fEP1pTMrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fGi619fDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fKk3XI2gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fMot6HCXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fKvtpmEodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fNDT8YQ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fRQljVhDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fTWi+L3sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fRdix3V1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fT0HMUypdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fX158jRldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C2fYF58jRldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2faJwfhdddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fYRJd0JXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2faUWhysCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2femTC+DfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fgaJl8PXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fexJRO1wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fg0voNd7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C2fg0voNd7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2flF5v99/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fm7yDqW1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2flMHSncddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fnYyfthNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2frrw4KhMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fte+mFajdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fr2L5ylvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fuQgs9SudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fyQOOKfndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f0UE1VHXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2fybEgntwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f0wlfJFLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f47gflp5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f61FhG6PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f46GlANYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f7QEhaC+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f/cny/bkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gBVOCXhPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2f/jTKDChdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gBrjHXEqdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C2gB7jHXEqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gF92HLzPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gHxsuWa+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gGIsiB5HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gIeirT6SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gMgfMfRvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gOUVvddndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gMrYoRZmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gPMtPHktdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gTOpsGgSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gVCgTRICdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gTZ0CA+ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gVqQA+6idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gZsMmWt2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gbgDJU5udX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C2gbwDFId3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gZ3buc+adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gcKo2n89dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2ggMlXzUadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2giQb6xgRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2ggXbqQiidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gioS13MZdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C2gi6ciGFjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gmykO7QLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2go0ep4r0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gnAAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gpYoJAt4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gtakqMFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gven62v0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gtmA08/2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gwLlzU7TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2gz9iUgSwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2g2BY3eendX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2g0ERe1KHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2g23446wMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2g651aGHpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2g89r9EThdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C2g7EroW56dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 122636, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "", ":serialized:": "gAWVfAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFhDOlxVc2Vyc1xSb2xhbmRcLmNvbmRhXGVudnNcZmFzdGJvb2tcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UaA6MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Windows-10-10.0.22631-SP0 10.0.22631", "Python": "3.11.9", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.0", "GPU Enabled": "False", "Numpy": "1.24.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}