File size: 5,266 Bytes
47e2bbc
 
 
 
101283d
47e2bbc
39e9009
 
47e2bbc
 
 
 
 
101283d
47e2bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39e9009
47e2bbc
 
 
 
 
39e9009
 
 
81fc35d
39e9009
 
47e2bbc
39e9009
47e2bbc
39e9009
47e2bbc
 
 
 
 
 
 
 
 
39e9009
47e2bbc
 
 
39e9009
47e2bbc
 
 
 
 
 
 
39e9009
 
47e2bbc
39e9009
 
 
47e2bbc
 
 
 
39e9009
47e2bbc
 
 
39e9009
47e2bbc
 
39e9009
47e2bbc
 
39e9009
47e2bbc
 
 
 
 
39e9009
 
47e2bbc
 
39e9009
47e2bbc
 
39e9009
47e2bbc
 
 
 
 
39e9009
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import  Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, AutoencoderKL, StableDiffusionXLControlNetPipeline, AutoPipelineForText2Image
import torch
from diffusers.utils import load_image



import numpy as np
import cv2
import controlnet_hinter
# ADDED AUTO PIPE, next try replacing
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
    raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16

# controlnet mapping for controlnet id and control hinter
CONTROLNET_MAPPING = {
    "canny_edge": {
        "model_id": "lllyasviel/sd-controlnet-canny",
        "hinter": controlnet_hinter.hint_canny
    },
    "pose": {
        "model_id": "lllyasviel/sd-controlnet-openpose",
        "hinter": controlnet_hinter.hint_openpose
    },
    "depth": {
        "model_id": "lllyasviel/sd-controlnet-depth",
        "hinter": controlnet_hinter.hint_depth
    },
    "scribble": {
        "model_id": "lllyasviel/sd-controlnet-scribble",
        "hinter": controlnet_hinter.hint_scribble,
    },
    "segmentation": {
        "model_id": "lllyasviel/sd-controlnet-seg",
        "hinter": controlnet_hinter.hint_segmentation,
    },
    "normal": {
        "model_id": "lllyasviel/sd-controlnet-normal",
        "hinter": controlnet_hinter.hint_normal,
    },
    "hed": {
        "model_id": "lllyasviel/sd-controlnet-hed",
        "hinter": controlnet_hinter.hint_hed,
    },
    "hough": {
        "model_id": "lllyasviel/sd-controlnet-mlsd",
        "hinter": controlnet_hinter.hint_hough,
    }
}

 
class EndpointHandler():
    def __init__(self, path=""):
        # define default controlnet id and load controlnet
        self.control_type = "normal"
        self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
 
        # Load StableDiffusionControlNetPipeline
        self.stable_diffusion_id = "stablediffusionapi/disney-pixar-cartoon"
        self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
                                                                      controlnet=self.controlnet,
                                                                      torch_dtype=dtype, 
                                                                      safety_checker=None).to(device)
 
        # Define Generator with seed
        # COMMENTED self.generator = torch.Generator(device="cpu").manual_seed(3)

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        """
        :param data: A dictionary contains `inputs` and optional `image` field.
        :return: A dictionary with `image` field contains image in base64.
        """
        prompt = data.pop("inputs", None)
        image = data.pop("image", None)
        controlnet_type = data.pop("controlnet_type", None)

        # Check if neither prompt nor image is provided
        if prompt is None and image is None:
            return {"error": "Please provide a prompt and base64 encoded image."}

        # Check if a new controlnet is provided
        if controlnet_type is not None and controlnet_type != self.control_type:
            print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
            self.control_type = controlnet_type
            self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
                                                              torch_dtype=dtype).to(device)
            self.pipe.controlnet = self.controlnet


        # hyperparamters
        negatice_prompt = data.pop("negative_prompt", None)
        num_inference_steps = data.pop("num_inference_steps", 150)
        guidance_scale = data.pop("guidance_scale", 5)
        negative_prompt = data.pop("negative_prompt", None)
        height = data.pop("height", None)
        width = data.pop("width", None)
        controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)

        # process image
        image = self.decode_base64_image(image)
        control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)

        # run inference pipeline
        out = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=control_image,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=1,
            height=height,
            width=width,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            guess_mode=True, 

        )

        #generator=self.generator COMMENTED from self.pipe
        # return first generate PIL image
        return out.images[0]

    # helper to decode input image
    def decode_base64_image(self, image_string):
        base64_image = base64.b64decode(image_string)
        buffer = BytesIO(base64_image)
        image = Image.open(buffer)
        return image