sagarsidhwa
commited on
V1 Training complete
Browse files
README.md
CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 3.
|
23 |
-
- Rouge1: 16.
|
24 |
-
- Rouge2:
|
25 |
-
- Rougel: 16.
|
26 |
-
- Rougelsum: 16.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -43,20 +43,25 @@ More information needed
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 5.6e-05
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
49 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
| 3.
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.0303
|
23 |
+
- Rouge1: 16.6557
|
24 |
+
- Rouge2: 7.7494
|
25 |
+
- Rougel: 16.0414
|
26 |
+
- Rougelsum: 16.1216
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 5.6e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
- seed: 42
|
49 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
57 |
+
| 6.9675 | 1.0 | 1209 | 3.2986 | 15.4389 | 6.948 | 14.7479 | 14.8713 |
|
58 |
+
| 3.8997 | 2.0 | 2418 | 3.1665 | 16.3621 | 7.6947 | 15.7833 | 15.7696 |
|
59 |
+
| 3.5826 | 3.0 | 3627 | 3.1106 | 17.1917 | 8.4901 | 16.3918 | 16.472 |
|
60 |
+
| 3.421 | 4.0 | 4836 | 3.0963 | 17.3735 | 8.8287 | 16.7517 | 16.8372 |
|
61 |
+
| 3.3089 | 5.0 | 6045 | 3.0490 | 16.7794 | 7.6926 | 16.1692 | 16.253 |
|
62 |
+
| 3.2437 | 6.0 | 7254 | 3.0401 | 16.6808 | 8.0175 | 15.9504 | 16.0499 |
|
63 |
+
| 3.2133 | 7.0 | 8463 | 3.0292 | 16.3645 | 7.743 | 15.8797 | 15.9826 |
|
64 |
+
| 3.1851 | 8.0 | 9672 | 3.0303 | 16.6557 | 7.7494 | 16.0414 | 16.1216 |
|
65 |
|
66 |
|
67 |
### Framework versions
|